版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A.5 B.10 C.6 D.82.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=65°,则∠ACD的度数为()A.65° B.60° C.55° D.45°3.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距高是;③AF=CF;④△ABF
的面积为其中一定成立的有()个.A.1 B.2 C.3 D.44.下列各曲线表示的与的关系中,不是的函数的是()A. B.C. D.5.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知一次函数的图象经过点A,且函数值y随x的增大而减小,则点A的坐标可能是A. B. C. D.7.两次小测验中,李红分别得了64分(满分80分)和82分(满分100分),如果都按满分100分计算,李红两次成绩的平均分为()A.73 B.81 C.64.8 D.808.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A、B,把正方形沿箭头方向推,使点D落在y轴的正半轴上的点处,则点C的对应点的坐标为()A. B. C. D.9.如图,在平面直角坐标系中,一次函数经过,两点,则不等式的解是A. B. C. D.10.下列是最简二次根式的是A. B. C. D.11.如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管()根.A.2 B.4 C.5 D.无数12.点M在x轴上方,y轴左侧,距离x轴1个单位长度,距离y轴4个单位长度,则点M的坐标为()A.(1,4) B.(﹣1,﹣4) C.(4,﹣1) D.(﹣4,1)二、填空题(每题4分,共24分)13.若点P(-2,2)是正比例函数y=kx(k≠0)图象上的点,则此正比例函数的解析式为______.14.如图,▱ABCD中,∠ABC=60°,AB=4,AD=8,点E,F分别是边BC,AD的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是______.15.若直线y=x+h与y=2x+3的交点在第二象限,则h的取值范围是_____.16.若,,则代数式__________.17.两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为_____.18.菱形的周长为8cm,一条对角线长2cm,则另一条对角线长为cm.。三、解答题(共78分)19.(8分)计算:﹣22﹣|2﹣|+(﹣1)2017×(π﹣3)0﹣()﹣120.(8分)某校八年级一班20名女生某次体育测试的成绩统计如下:成绩(分)60708090100人数(人)15xy2(1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;(2)在(1)的条件下,设20名学生测试成绩的众数是a,中位数是b,求的值.21.(8分)己知反比例函数(常数,)(1)若点在这个函数的图像上,求的值;(2)若这个函数图像的每一支上,都随的增大而增大,求的取值范围;(3)若,试写出当时的取值范围.22.(10分)如图,△ABC的中线BD,CE交于点O,F,G分别是BO,CO的中点.(1)填空:四边形DEFG是四边形.(2)若四边形DEFG是矩形,求证:AB=AC.(3)若四边形DEFG是边长为2的正方形,试求△ABC的周长.23.(10分)矩形不一定具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.是轴对称图形24.(10分)在平面直角坐标系中,O为坐标原点.(1)已知点A(3,1),连接OA,作如下探究:探究一:平移线段OA,使点O落在点B,设点A落在点C,若点B的坐标为(1,2),请在图①中作出BC,点C的坐标是__________.探究二:将线段OA绕点O逆时针旋转90°,设点A落在点D,则点D的坐标是__________;连接AD,则AD=________(图②为备用图).(2)已知四点O(0,0),A(a,b),C,B(c,d),顺次连接O,A,C,B,O,若所得到的四边形为平行四边形,则点C的坐标是____________.25.(12分)已知四边形ABCD,请你作出一个新图形,使新图形与四边形ABCD的相似比为2:1,用圆规、直尺作图,不写作法,但要保留作图痕迹.26.已知:如图,在四边形中,过作交于点,过作交于,且.求证:四边形是平行四边形.
参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:根据菱形的性质:菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可知每个直角三角形的直角边,根据勾股定理可将菱形的边长求出.解:设AC与BD相交于点O,由菱形的性质知:AC⊥BD,OA=AC=3,OB=BD=4在Rt△OAB中,AB===1所以菱形的边长为1.故选A.考点:菱形的性质.2、C【解析】
由作法可知,MN为垂直平分线,DC=CD,由等腰三角形性质可知∠BCD=∠B=30°,再由三角形内角和即可求出∠ACD度数.【详解】解:由作法可知,MN为垂直平分线,
∴BD=CD,
∴∠BCD=∠B=30°,
∵∠A=65°,
∴∠ACB=180°-∠A-∠B=85°,
∴∠ACD=∠ACB-∠BCD=85°-30°=55°.
故选:C.【点睛】此题主要考查了基本作图以及线段垂直平分线的性质,得出∠DCB=∠DBC=30°是解题关键.3、C【解析】
根据菱形的性质,逐个证明即可.【详解】①四边形ABCD为菱形AB=BC∠DAB=60°△ABF≌△CBF因此①正确.②过E作EM垂直于AB的延长线于点MCE=2BE=4∠DAB=60°因此点E到AB的距高为故②正确.③根据①证明可得△ABF≌△CBFAF=CF故③正确.④和的高相等所以△ABF≌△CBF故④错误.故有3个正确,选C.【点睛】本题主要考查菱形的性质,关键在于证明三角形全等,是一道综合形比较强的题目.4、D【解析】
根据是函数的定义即可求解.【详解】若是的函数,则一个自变量x对应一个因变量y,故D错误.【点睛】此题主要考查函数图像的识别,解题的关键是熟知函数的定义.5、C【解析】试题解析:由一次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴直线y=bx+k经过第一、二、四象限,∴直线y=bx+k不经过第三象限,故选C.6、B【解析】
先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】解:一次函数的函数值y随x的增大而减小,.A、当,时,,解得,此点不符合题意,故本选项错误;B、当,时,,解得,此点符合题意,故本选项正确;C、当,时,,解得,此点不符合题意,故本选项错误;D、当,时,,解得,此点不符合题意,故本选项错误.故选:B.【点睛】考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.7、B【解析】
李红得分和竞赛试卷的满分100的比值一定,所以李红应的分和竞赛试卷的满分是100分成正比例,由此列式解答即可.【详解】解:设李红应得x分,
则6480=x100,∴李红两次成绩的平均分为:80+故选B.【点睛】本题考查了比例在日常生活中的应用,要正确判断哪两种量成正比例.8、A【解析】
由已知条件得到AD′=AD=2,AO=1,AB=2,根据勾股定理得到,于是得到结论.【详解】解:∵AD′=AD=2,
,
∴,
∵C′D′=2,C′D′∥AB,
∴C′(2,),
故选A.【点睛】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.9、D【解析】
将A(0,2),B(3,0)代入y=ax+b得出a,b值,再代入ax+b>0即可求出答案.【详解】将A(0,2),B(3,0)代入y=ax+b得,即,x<3.正确选D.【点睛】根据函数的图象和交点坐标即可求得结果.此题考查了反比例函数与一次函数的交点问题,关键是注意掌握数形结合思想的应用.10、B【解析】
根据最简二次根式的定义即可判断.【详解】A.=2,故不是最简二次根式;B.是最简二次根式;C.根式含有分数,不是最简二次根式;D.有可以开方的m2,不是最简二次根式.故选B.【点睛】此题主要考查最简二次根式的判断,解题的关键是熟知最简二次根式的定义.11、C【解析】分析:因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ的度数(必须≤90°),就可得出钢管的根数.详解:如图所示,∠AOB=15°,∵OE=FE,∴∠GEF=∠EGF=15°×2=30°,∵EF=GF,所以∠EGF=30°∴∠GFH=15°+30°=45°∵GH=GF∴∠GHF=45°,∠HGQ=45°+15°=60°∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QB∴∠QBH=75°,∠HQB=180-75°-75°=30°,故∠OQB=60°+30°=90°,不能再添加了.故选C.点睛:根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解答.12、D【解析】
由点M在x轴的上方,在y轴左侧,判断点M在第二象限,符号为(-,+),再根据点M到x轴的距离决定纵坐标,到y轴的距离决定横坐标,求M点的坐标.【详解】解:∵点M在x轴上方,y轴左侧,∴点M的纵坐标大于0,横坐标小于0,点M在第二象限;∵点M距离x轴1个单位长度,距离y轴4个单位长度,∴点的横坐标是-4,纵坐标是1,故点M的坐标为(-4,1).故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题(每题4分,共24分)13、y=-x【解析】
直接把点(-2,2)代入正比例函数y=kx(k≠0),求出k的数值即可.【详解】把点(-2,2)代入y=kx得2=-2k,k=-1,所以正比例函数解析式为y=-x.故答案为:y=-x.【点睛】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.14、4+4【解析】连接EF,点E、F分别是边BC、AD边的中点,可知BE=AF=AB=4,可证四边形ABEF为菱形,根据菱形的性质可知AE⊥BF,且AE与BF互相平分,∠ABC=60°,△ABE为等边三角形,ME=F=4,由勾股定理求MF,根据菱形的性质可证四边形MENF为矩形,再求四边形ENFM的周长.解:连接EF,∵点E、F分别是边BC、AD边的中点,∴BE=AF=AB=4,又AF∥BE,∴四边形ABEF为菱形,由菱形的性质,得AE⊥BF,且AE与BF互相平分,∵∠ABC=60°,∴△ABE为等边三角形,ME=F=4,在Rt△MEF中,由勾股定理,得MF=,由菱形的性质,可知四边形MENF为矩形,∴四边形ENFM的周长=2(ME+MF)=4+4.故答案为4+415、<h<1【解析】
将两直线解析式联立,求得交点坐标,然后根据交点在第二象限,列出一元一次不等式组,求解即可.【详解】将两直线解析式联立得:解得∵交点在第二象限∴∴<h<1故答案为:<h<1.【点睛】本题考查了二元一次方程组的解法及一元一次不等式组的解法,本题难度不大.16、20【解析】
根据完全平方公式变形后计算,可得答案.【详解】解:故答案为:20【点睛】本题考查了二次根式的运算,能利用完全平方公式变形计算是解题关键.17、1【解析】试题解析:∵PC⊥x轴,PD⊥y轴,∴S矩形PCOD=2,S△AOC=S△BOD=,∴四边形PAOB的面积=S矩形PCOD-S△AOC-S△BOD=2--=1.18、【解析】解:先根据菱形的四条边长度相等求出边长,再由菱形的对角线互相垂直平分根据勾股定理即可求出另一条对角线的长。三、解答题(共78分)19、【解析】
直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式===.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20、(1)x=5,y=7;(1)1.【解析】试题分析:(1)根据加权平均数的计算方法列式求出x、y的关系式,再根据x、y都是整数进行求解即可;(1)先根据众数与中位数的概念确定出a、b的值,再代入代数式进行二次根式的化简即可求解.试题解析:解:(1)平均数==81,整理得,8x+9y=103,∵x、y都是整数,∴x=5,y=7;(1)∵90分的有7人,最多,∴众数a=90,按照成绩从低到高,第十个同学的成绩是80分,第十一个同学的成绩是80分,(80+80)÷1=80,∴中位数b=80,∴===1.点睛:本题考查了加权平均数,众数与中位数的概念,本题根据x、y都是整数并求出其值是解题的关键.21、(1);(2);(3)【解析】
(1)把点代入函数即可求解;(2)根据这个函数图像的每一支上,都随的增大而增大,求出k即可;(3)当,求出x的范围即可;【详解】(1)把点代入函数,得2=得k=4;(2)∵这个函数图像的每一支上,都随的增大而增大,求出k即可;∴k-2<0∴(3)当,∵∴-3≤≤-2∴【点睛】本题考查的是的反比例函数,熟练掌握反比例函数的性质是解题的关键.22、(1)平行;(2)见解析;(3).【解析】
(1)根据三角形中位线定理得出DE∥BC,DE=BC,FG∥BC,FG=BC,那么DE∥FG,DE=FG,利用有一组对边平行且相等的四边形是平行四边形即可得出四边形DEFG是平行四边形;
(2)先由矩形的性质得出OD=OE=OF=OG.再根据重心的性质得到OB=2OD,OC=2OE,等量代换得出OB=OC.利用SAS证明△BOE≌△COD,得出BE=CD,然后根据中点的定义即可证明AB=AC;
(3)连接AO并延长交BC于点M,先由三角形中线的性质得出M为BC的中点,由(2)得出AB=AC,根据等腰三角形三线合一的性质得出AM⊥BC,再由三角形中位线定理及三角形重心的性质得出BC=2FG=1,AM=AO=6,由勾股定理求出AB=2,进而得到△ABC的周长.【详解】(1)解:∵△ABC的中线BD,CE交于点O,
∴DE∥BC,DE=BC,
∵F,G分别是BO,CO的中点,
∴FG∥BC,FG=BC,
∴DE∥FG,DE=FG,
∴四边形DEFG是平行四边形.
故答案为平行;
(2)证明:∵四边形DEFG是矩形,
∴OD=OE=OF=OG.
∵△ABC的中线BD,CE交于点O,
∴点O是△ABC的重心,
∴OB=2OD,OC=2OE,
∴OB=OC.
在△BOE与△COD中,,
∴△BOE≌△COD(SAS),
∴BE=CD,
∵E、D分别是AB、AC中点,
∴AB=AC;
(3)解:连接AO并延长交BC于点M.
∵三角形的三条中线相交于同一点,△ABC的中线BD、CE交于点O,
∴M为BC的中点,
∵四边形DEFG是正方形,
由(2)可知,AB=AC,
∴AM⊥BC.
∵正方形DEFG边长为2,F,G分别是BO,CO的中点,
∴BC=2FG=1,BM=MC=BC=2,AO=2EF=1,
∴AM=AO=6,
∴AB===2,
∴△ABC的周长=AB+AC+BC=1+1.【点睛】本题考查了平行四边形的判定与性质,三角形中位线性质定理,矩形的性质,三角形重心的性质,等腰三角形的性质,全等三角形的判定与性质,其中三角形的中位线性质定理为证明线段相等和平行提供了依据.23、B【解析】
根据矩形的性质解答即可.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、C、D正确,故选:B.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;
⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.24、(1)探究一图见解析;(4,3);探究二(-1,3);2;(2)(a+c,b+d)【解析】
(1)探究一:由于点A(3,1),连接OA,平移线段OA,使点O落在点B.设点A落在点C,若点B的坐标为(1,2),由此即可得到平移方法,然后利用平移方法即可确定在图1中作出BC,并
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025写字楼租赁解除合同协议书
- 山东药品食品职业学院《灾害与环境遥感》2023-2024学年第一学期期末试卷
- 厦门华厦学院《光电检测技术及应用》2023-2024学年第一学期期末试卷
- 2025年中小学校园食品安全及营养配餐综合服务合同3篇
- 南京城市职业学院《管理信息系统分析与设计》2023-2024学年第一学期期末试卷
- 家长如何引导孩子进行自主学习
- 2025车辆转让协议书合同范本全面
- 小学数学教育的重要性与趋势分析
- 安全工程技术在企业中的应用与实践
- 小学数学教育与国际教育标准的对接研究
- 考级代理合同范文大全
- 2024解析:第三章物态变化-讲核心(原卷版)
- 新的护理交班模式
- 安全行车知识培训
- 2024年安徽省高校分类对口招生考试数学试卷真题
- 第12讲 语态一般现在时、一般过去时、一般将来时(原卷版)
- 2024年采购员年终总结
- 2024年新疆区公务员录用考试《行测》试题及答案解析
- 肺动脉高压的护理查房课件
- 2024电影数字节目管理中心招聘历年高频难、易错点练习500题附带答案详解
- 棋牌室消防应急预案
评论
0/150
提交评论