2023年广东省广州三中学八年级数学第二学期期末考试模拟试题含解析_第1页
2023年广东省广州三中学八年级数学第二学期期末考试模拟试题含解析_第2页
2023年广东省广州三中学八年级数学第二学期期末考试模拟试题含解析_第3页
2023年广东省广州三中学八年级数学第二学期期末考试模拟试题含解析_第4页
2023年广东省广州三中学八年级数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知关于的一元二次方程有一个根是,那么的值是()A. B. C. D.2.如图,△ABC三边的长分别为3、4、5,点D、E、F分别是△ABC各边中点,则△DEF的周长和面积分别为()A.6,3 B.6,4 C.6, D.4,63.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称 B.关于y轴对称C.绕原点逆时针旋转 D.绕原点顺时针旋转4.老师在计算学生每学期的总成绩时,是把平时成绩和考试成绩按如图所示的比例计算.如果一个学生的平时成绩为70分,考试成绩为90分,那么他的学期总评成绩应为(

)A.70分

B.90分

C.82分

D.80分5.若菱形的周长为24cm,一个内角为60°,则菱形的面积为()A.4cm2 B.9cm2 C.18cm2 D.36cm26.下列式子中属于最简二次根式的是()A. B. C. D.7.如图,▱ABCD的对角线AC,BD交于点O,已知,,,则的周长为A.13 B.17 C.20 D.268.下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有1个白色正方形,图②中有4个白色正方形,图③中有7个白色正方形,图④中有10个白色正方形,,依次规律,图⑩中白色正方形的个数是()A.27 B.28 C.29 D.309.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有A.1组 B.2组 C.3组 D.4组10.如图,在平行四边形ABCD中,下列结论不一定成立的是()A.∠A+∠B=180° B.∠A=∠CC.AB=DC D.AC⊥BD11.关于的方程(为常数)有两个相等的实数根,那么k的值为()A. B. C. D.12.已知关于x的方程的解是正数,那么m的取值范围为()A.m>-6且m≠2 B.m<6 C.m>-6且m≠-4 D.m<6且m≠-2二、填空题(每题4分,共24分)13.数据1、x、-1、2的平均数是,则这组数据的方差是_______.14.将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线和x轴上,则点B2019的横坐标是______.15.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对______题16.已知,化简二次根式的正确结果是_______________.17.如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM与底座A0N平行,长度均为24米,点B,B0分别在AM和A0N上滑动这种设计是利用平行四边形的________;为了安全,该平台作业时∠B1不得超过60°,则平台高度(AA0)的最大值为________

米18.请观察一列分式:﹣,﹣,…则第11个分式为_____.三、解答题(共78分)19.(8分)如图,在中,分别是的平分线.求证:四边形是平行四边形.20.(8分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)当AM的值为何值时,四边形AMDN是矩形,请说明理由.21.(8分)如图,已知带孔的长方形零件尺寸(单位:),求两孔中心的距离.22.(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?23.(10分)如图,在中,,平分交于点,于点,过点作交于点,连接.(1)求证:四边形是菱形;(2)若,,求菱形的周长.24.(10分)如图,在中,点,是直线上的两点,,连结,,,.(1)求证:四边形是平行四边形.(2)若,,,四边形是矩形,求的长.25.(12分)已知在△ABC中,AB=1,BC=4,CA=.(1)分别化简4,的值.(2)试在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上(每个小方格的边长为1).(3)求出△ABC的面积.26.探究:如图1,在△ABC中,AB=AC,CF为AB边上的高,点P为BC边上任意一点,PD⊥AB,PE⊥AC,垂足分别为点D,E.求证:PD+PE=CF.嘉嘉的证明思路:连结AP,借助△ABP与△ACP的面积和等于△ABC的面积来证明结论.淇淇的证明思路:过点P作PG⊥CF于G,可证得PD=GF,PE=CG,则PD+PE=CF.迁移:请参考嘉嘉或淇淇的证明思路,完成下面的问题:(1)如图1.当点P在BC延长线上时,其余条件不变,上面的结论还成立吗?若不成立,又存在怎样的关系?请说明理由;(1)当点P在CB延长线上时,其余条件不变,请直接写出线段PD,PE和CF之间的数量关系.运用:如图3,将矩形ABCD沿EF折叠,使点D落在点B处,点C落在点C′处.若点P为折痕EF上任一点,PG⊥BE于G,PH⊥BC于H,若AD=18,CF=5,直接写出PG+PH的值.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据一元二次方程的解的定义,将x=-1代入关于x的一元二次方程x1+3x+a=0,列出关于a的一元一次方程,通过解方程即可求得a的值.【详解】根据题意知,x=-1是关于x的一元二次方程x1+3x+a=0的根,

∴(-1)1+3×(-1)+a=0,即-1+a=0,

解得,a=1.

故选:C.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解使方程的左右两边相等.2、C【解析】分析:利用三角形中位线定理可知:△DEF∽△ABC,根据其相似比即可计算出△DEF的周长和面积.详解:∵点D、E、F分别是△ABC各边中点,∴△DEF∽△ABC,相似比为:.∴△DEF的周长=的周长=.∵△ABC三边的长分别为3、4、5,∴△ABC是直角三角形.∴△DEF的面积=的面积=.故选:C.点睛:本题主要考查了相似三角形.关键在于根据三角形的中位线定理得出两三角形相似,并得出相似比.3、C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.4、C【解析】

根据平时成绩和考试成绩的占比,可计算得出总评成绩.【详解】70.故答案为:C【点睛】考查的是加权平均数的求法.熟记公式是解决本题的关键.解题时要认真审题,不要把数据代错.5、C【解析】

由菱形的性质和已知条件得出AB=BC=CD=DA=6cm,AC⊥BD,由含30°角的直角三角形的性质得出BO=AB=3cm,由勾股定理求出OA,可得BD,AC的长度,由菱形的面积公式可求解.【详解】如图所示:∵四边形ABCD是菱形∴AB=BC=CD=DA,∠BAO=∠BAD=30°,AC⊥BD,OA=AC,BO=DO∵菱形的周长为14cm∴AB=BC=CD=DA=6cm∴BO=AB=3cm∴OA==3(cm)∴AC=1OA=6cm,BD=1BO=6cm∴菱形ABCD的面积=AC×BD=18cm1.故选:C.【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质、勾股定理;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.6、C【解析】

检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7、B【解析】

由平行四边形的性质得出,,,即可求出的周长.【详解】四边形ABCD是平行四边形,,,,的周长.故选:B.【点睛】本题主要考查了平行四边形的性质,并利用性质解题平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分.8、B【解析】

仔细观察图形,找到图形的个数与白色正方形的个数的通项公式后代入n=10后即可求解.【详解】解:观察图形发现:图①中有1个白色正方形,图②中有1+3×(2-1)=4个白色正方形,图③中有1+3×(3-1)=7个白色正方形,图④中有1+3×(4-1)=10个白色正方形,…,图n中有1+3(n-1)=3n-2个白色的正方形,当n=10时,1+3×(10-1)=28,故选:B.【点睛】本题是对图形变化规律的考查,难点在于利用求和公式求出第n个图形的黑色正方形的数目的通项表达式.9、C【解析】如图,(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD,∴∠BAD+∠ABC=180°,∴AD∥BC,∴四边形ABCD是平行四边形;(3)∵在四边形ABCD中,AO=CO,BO=DO,∴四边形ABCD是平行四边形;(4)∵在四边形ABCD中,AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.故选C.10、D【解析】

根据平行四边形的性质得到AD//BC、∠A=∠C、AB=DC从而进行判断.【详解】因为四边形ABCD是平行四边形,所以AD//BC、∠A=∠C、AB=DC,(故B、C选项正确,不符合题意)所以∠A+∠B=180°,(故A选项正确,不符合题意).故选:D.【点睛】考查了平行四边形的性质,解题关键是熟记平行四边形的性质.11、A【解析】

解:∵方程有两相等的实数根,∴△=b2-4ac=12-8k=0,解得:k=故选A.【点睛】本题考查根的判别式.12、C【解析】

先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.【详解】将分式方程转化为整式方程得:1x+m=3x-2解得:x=m+2.∵方程得解为正数,所以m+2>0,解得:m>-2.∵分式的分母不能为0,∴x-1≠0,∴x≠1,即m+2≠1.∴m≠-3.故m>-2且m≠-3.故选:C.【点睛】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.二、填空题(每题4分,共24分)13、【解析】

先由平均数的公式计算出x的值,再根据方差的公式计算.【详解】解:∵∴s2=.故答案为:.【点睛】本题考查了方差的定义与平均数的定义,熟练掌握概念是解题的关键.14、.【解析】

利用一次函数图象上点的坐标特征及正方形的性质可得出点B1,B2,B3,B4,B5的坐标,根据点的坐标的变化可找出变化规律“点Bn的坐标为(2n-1,2n-1)(n为正整数)”,再代入n=2019即可得出结论.【详解】当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1),点C1的坐标为(1,0).当x=1时,y=x+1=2,∴点A1的坐标为(1,2).∵A2B2C2C1为正方形,∴点B2的坐标为(3,2),点C2的坐标为(3,0).同理,可知:点B3的坐标为(7,4),点B4的坐标为(15,8),点B5的坐标为(31,16),…,∴点Bn的坐标为(2n-1,2n-1)(n为正整数),∴点B2019的坐标为(22019-1,22018).故答案为22019-1.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点Bn的坐标为(2n-1,2n-1)(n为正整数)”是解题的关键.15、19【解析】设他至少应选对x道题,则不选或错选为25−x道题.依题意得4x−2(25−x)⩾60得x⩾18又∵x应为正整数且不能超过25所以:他至少要答对19道题.故答案为19.16、【解析】

由题意:-a3b≥0,即ab≤0,∵a<b,∴a≤0<b;所以原式=|a|=-a.17、不稳定性;4.2【解析】

(1)根据四边形的不稳定性即可解决问题.(1)当∠B1=60°时,平台AA0的高度最大,解直角三角形A1B0A0,可得A0A1的长,再由AA3=A3A1=A1A1=A1A0,即可解决问题.【详解】解:(1)因为四边形具有不稳定性,点B,B0分别在AM和A0N上滑动,从而达到升降目的,因而这种设计利用了平行四边形的不稳定性;(1)由图可知,当∠B1=60°时,平台AA0的高度最大,=30°,B0A1=1A1C1=1.4,则A0A1=A1B0sin∠A1B0A0=1.4×=1.1.

又∵AA3=A3A1=A1A1=A1A0=1.1,则AA0=4×1.1=4.2.故答案为:不稳定性,4.2.【点睛】本题考查了解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、【解析】

分母中y的次数是分式的序次的2倍加1,分子中x的次数与序次一致,分式的序次为奇数时,分式的符合为负,分式的序次为偶数时,分式的符合为正,由此即可解决问题.【详解】根据规律可知:则第11个分式为﹣.故答案为﹣.【点睛】本题考查了分式的定义:叫分式,其中A、B都是整式,并且B中含有字母.也考查了从特殊到一般的规律的探究.三、解答题(共78分)19、详见解析.【解析】

由四边形ABCD是平行四边形可得,CE∥AF,∠DAB=∠DCB,又AE、CF分别平分∠DAB、∠BCD,所以∠2=∠3,可证四边形AFCE是平行四边形.【详解】∵四边形ABCD是平行四边形,∴CE∥AF,∠DAB=∠DCB,∵AE、CF分别平分∠DAB、∠BCD,∴∠2=∠3,又∠3=∠CFB,∴∠2=∠CFB,∴AE∥CF,又CE∥AF,∴四边形AFCE是平行四边形.20、(1)证明见解析;(2)AM=1.理由见解析.【解析】

解:(1)∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,∵点E是AD中点,∴DE=AE,在△NDE和△MAE中,,∴△NDE≌△MAE(AAS),∴ND=MA,∴四边形AMDN是平行四边形;(2)解:当AM=1时,四边形AMDN是矩形.理由如下:∵四边形ABCD是菱形,∴AD=AB=2,∵平行四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=1.【点睛】本题考查矩形的判定;平行四边形的判定;菱形的性质.21、50mm【解析】

连接两孔中心,然后如图构造一个直角三角形进而求解即可.【详解】如图所示,AC即为所求的两孔中心距离,∴==50.∴两孔中心距离为50mm【点睛】本题主要考查了勾股定理的运用,根据题意自己构造直角三角形是解题关键.22、答案见解析【解析】试题分析:(2)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤2和x>2两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(2)由题意知:当0<x≤2时,y甲=22x;当2<x时,y甲=22+25(x﹣2)=25x+2.y乙=26x+3;∴,;(2)①当0<x≤2时,令y甲<y乙,即22x<26x+3,解得:0<x<;令y甲=y乙,即22x=26x+3,解得:x=;令y甲>y乙,即22x>26x+3,解得:<x≤2.②x>2时,令y甲<y乙,即25x+2<26x+3,解得:x>3;令y甲=y乙,即25x+2=26x+3,解得:x=3;令y甲>y乙,即25x+2>26x+3,解得:0<x<3.综上可知:当<x<3时,选乙快递公司省钱;当x=3或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>3时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.23、(1)见解析;(2)【解析】

(1)由角平分线的性质可得∠ABD=∠CBD,再由垂直的定义得出∠EDB=∠CDB,然后由CF∥DE,得出∠EDB=∠CFD,最后利用菱形的判定解答即可;(2)利用勾股定理及菱形的性质求解即可.【详解】解:(1)证明:解:(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵∠ACB=90°,DE⊥AB,∴DE=CD,∠CBD+∠CDB=90°,∠EBD+∠EDB=90°,∴∠EDB=∠CDB,∵CF∥DE,∴∠EDB=∠CFD,∴∠CDB=∠CFD,∴CD=CF,∴DE=CF,∴DE=EF=FC=DC∴四边形是菱形.(2)在RT△ADE中,,,∴∠A=30°,AC=,在RT△ADE中,∵∠A=30°,∴AD=2DE,∵四边形是菱形,∴DE=DC,∴AD=2DC,∴AC=3DC=6,∴DC=2,∴四边形CDEF的周长为:2×4=8.【点睛】本题考查了角平分线的性质,勾股定理及菱形的判定与性质,解题的关键是掌握这些性质和判定.24、(1)见解析;(2)【解析】

(1)连结交于点,由四边形ABCD是平行四边形,可得OA=OC,OD=OB,又因为,从而OE=OF,可证四边形是平行四边形;(2)由勾股定理可求出BD的长,进而求出OD的长,再由勾股定理求出AO的长,根据矩形的性质可知AO=EO,从而可求出DE的长.【详解】(1)连结交于点,∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵,∴OE=OF,四边形是平行四边形;(2),,,,,.四边形是矩形,,,,,.【点睛】本题考查了平行四边形的判定与性质,矩形的性质,勾股定理等知识,熟练掌握平行四边形的判定与性质是解答(1)的关键,熟练掌握矩形的性质是解(2)的关键.25、见解析【解析】

(1)首先化简和,再分别计算乘法即可;(2)根据勾股定理画出AC=,再确定B的位置,既要使AB=1,又要使BC=即可;(3)利用三角形的面积公式,以BA为底,确定AB上的高为2,再计算即可.【详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论