陕西省西安市东城一中学2022-2023学年数学八年级第二学期期末统考试题含解析_第1页
陕西省西安市东城一中学2022-2023学年数学八年级第二学期期末统考试题含解析_第2页
陕西省西安市东城一中学2022-2023学年数学八年级第二学期期末统考试题含解析_第3页
陕西省西安市东城一中学2022-2023学年数学八年级第二学期期末统考试题含解析_第4页
陕西省西安市东城一中学2022-2023学年数学八年级第二学期期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.某学校初、高六个年级共有名学生,为了了解其视力情况,现采用抽样调查,如果按的比例抽样,则样本容量是()A. B. C. D.2.点A、B、C、D在同一平面内,从AB∥CD,AB=CD,AD∥BC这三条件中任选两个能使四边形ABCD是平行四边形的选法有()A.1种 B.2种 C.3种 D.以上都不对3.用配方法解方程,经过配方,得到()A. B. C. D.4.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是105.若二次根式有意义,则x的取值范围是()A. B. C. D.6.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是()A.2 B.4 C. D.7.关于的方程(为常数)有两个相等的实数根,那么k的值为()A. B. C. D.8.函数中,自变量x的取值范围是A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠09.20190的值等于()A.-2019 B.0 C.1 D.201910.等腰三角形的一个外角为140°,那么底角等于(

)A.40°B.100°

C.70°

D.40°或70°二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,过点分别作轴于点,轴于点,、分别交反比例函数的图像于点、,则四边形的面积为__________.12.已知y与2x成正比例,且当x=1时y=4,则y关于x的函数解析式是__________.13.在平面直角坐标系中,中,点,若随变化的一族平行直线与(包括边界)相交,则的取值范围是______.14.计算:=_____________.15.如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM与底座A0N平行,长度均为24米,点B,B0分别在AM和A0N上滑动这种设计是利用平行四边形的________;为了安全,该平台作业时∠B1不得超过60°,则平台高度(AA0)的最大值为________

米16.平面直角坐标系xOy中,点A(x1,y1)与B(x2,y2),如果满足x1+x2=0,y1﹣y2=0,其中x1≠x2,则称点A与点B互为反等点.已知:点C(3,8)、G(﹣5,8),联结线段CG,如果在线段CG上存在两点P,Q互为反等点,那么点P的横坐标xP的取值范围是__.17.当__________时,分式有意义.18.如图,在中,和分别平分和,过点作,分别交于点,若,则线段的长为_______.三、解答题(共66分)19.(10分)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾按照“可回收物”、“有害垃圾”、“湿垃圾”、“干垃圾”的分类标准.没有垃圾分类和未指定投放到指定垃圾桶内等会被罚款和行政处罚.垃圾分类制度即将在全国范围内实施,很多商家推出售卖垃圾分类桶,某商店经销垃圾分类桶.现有如下信息:信息1:一个垃圾分类桶的售价比进价高12元;信息2:卖3个垃圾分类桶的费用可进货该垃圾分类桶4个;请根据以上信息,解答下列问题:(1)该商品的进价和售价各多少元?(2)商店平均每天卖出垃圾分类桶16个.经调查发现,若销售单价每降低1元,每天可多售出2个.为了使每天获取更大的利润,垃圾分类桶的售价为多少元时,商店每天获取的利润最大?每天的最大利润是多少?20.(6分)某校需要招聘一名教师,对三名应聘者进行了三项素质测试下面是三名应聘者的综合测试成绩:应聘者成绩项目ABC基本素质706575专业知识655550教学能力808585(1)如果根据三项测试的平均成绩确定录用教师,那么谁将被录用?(2)学校根据需要,对基本素质、专业知识、教学能力的要求不同,决定按2:1:3的比例确定其重要性,那么哪一位会被录用?21.(6分)解方程:+=1.22.(8分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.(1)当点E与点D重合时,△BDF的面积为;当点E为CD的中点时,△BDF的面积为.(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;

(3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.23.(8分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:米),则d1,d2与t的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v2=________米/分;

(2)写出d1与t的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?24.(8分)如图,,是上的一点,且,.求证:≌25.(10分)如图,在中,,,求:的长;的面积;26.(10分)下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.作法:如图①以点B为圆心,AC长为半径作弧;②以点C为圆心,AB长为半径作弧;③两弧交于点D,A,D在BC同侧;④连接AD,CD.所以四边形ABCD是矩形,根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:链接BD.∵AB=________,AC=__________,BC=BC∴ΔABC≌ΔDCB∴∠ABC=∠DCB=90°∴AB∥CD.∴四边形ABCD是平行四边形∵∠ABC=90°∴四边形ABCD是矩形.(_______________)(填推理的依据)

参考答案一、选择题(每小题3分,共30分)1、C【解析】

总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:10×10%=1,

故样本容量是1.

故选:C.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2、B【解析】

分别从3个条件中选取2个,共3种情况:若选AB∥CD,AB=CD,若选AB∥CD,AD∥BC,若选AB=CD,AD∥BC,逐一利用平行四边形的判定方法验证即可.【详解】若选AB∥CD,AB=CD,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形);若选AB∥CD,AD∥BC,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形);若选AB=CD,AD∥BC,不能说明四边形ABCD是平行四边形;故选:B.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.3、B【解析】

按照配方法的步骤,先把常数项移到右侧,然后在两边同时加上一次项系数一半的平方,配方即可.【详解】x2+3x+1=0,x2+3x=-1,x2+3x+=-1+,,故选B.【点睛】本题考查了解一元二次方程——配方法,熟练掌握配方法的步骤以及要求是解题的关键.4、A【解析】

根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故选A.考点:方差;算术平均数;中位数;众数.5、C【解析】

根据二次根式有意义的条件“被开方数大于或等于0”进行求解即可.【详解】∵二次根式有意义,∴,∴,故选:C.【点睛】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.6、B【解析】

解:在矩形ABCD中,OA=OC,OB=OD,AC=BD,∴OA=OC.∵∠AOD=60°,∴△OAB是等边三角形.∴OA=AD=1.∴AC=1OA=1×1=2.故选B.7、A【解析】

解:∵方程有两相等的实数根,∴△=b2-4ac=12-8k=0,解得:k=故选A.【点睛】本题考查根的判别式.8、C【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.9、C【解析】

根据任何非0数的0次幂都等于1即可得出结论.【详解】解:20190=1.故选:C.【点睛】此题考查的是零指数幂的性质,掌握任何非0数的0次幂都等于1是解决此题的关键.10、D【解析】试题分析:首先要讨论140°的角是顶角的外角还是底角的外角,再利用等腰三角形的性质和三角形内角和定理求出底角.当等腰三角形的顶角的外角为140°,则顶角等于40°,所以底角等于70°;当等腰三角形的底角的外角为140°,则底角等于40°.故选D.考点:本题考查了等腰三角形的性质点评:学会运用分类讨论的思想解决问题.熟练掌握等腰三角形的性质和三角形的内角和定理.二、填空题(每小题3分,共24分)11、1【解析】

根据反比例函数系数k的几何意义可得S△DBO=S△AOC=|k|=1,再利用矩形OCPD的面积减去△BDO和△CAO的面积即可.【详解】解:∵B、A两点在反比例函数的图象上,∴S△DBO=S△AOC=×2=1,∵P(2,3),∴四边形DPCO的面积为2×3=6,∴四边形BOAP的面积为6﹣1﹣1=1,故答案为:1.【点睛】此题主要考查了反比例函数k的几何意义,关键是掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.12、y=4x【解析】

根据y与1x成正比例,当x=1时,y=4,用待定系数法可求出函数关系式.【详解】解:设所求的函数解析式为:y=k•1x,

将x=1,y=4代入,得:4=k•1,

所以:k=1.

则y关于x的函数解析式是:y=4x.

故答案为:y=4x.【点睛】本题考查待定系数法求解析式,解题关键是根据已知条件,用待定系数法求得函数解析式k的值,写出y关于x的函数解析式.13、【解析】

根据题意,可知点B到直线的距离最短,点C到直线的距离最长,求出两个临界点b的值,即可得到取值范围.【详解】解:根据题意,点,∵直线与(包括边界)相交,∴点B到直线的距离了最短,点C到直线的距离最长,当直线经过点B时,有,∴;当直线经过点C时,有,∴;∴的取值范围是:.【点睛】本题考查了一次函数的图像和性质,以及一次函数的平移问题,解题的关键是掌握一次函数的性质,一次函数的平移,正确选出临界点进行解题.14、【解析】

根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.15、不稳定性;4.2【解析】

(1)根据四边形的不稳定性即可解决问题.(1)当∠B1=60°时,平台AA0的高度最大,解直角三角形A1B0A0,可得A0A1的长,再由AA3=A3A1=A1A1=A1A0,即可解决问题.【详解】解:(1)因为四边形具有不稳定性,点B,B0分别在AM和A0N上滑动,从而达到升降目的,因而这种设计利用了平行四边形的不稳定性;(1)由图可知,当∠B1=60°时,平台AA0的高度最大,=30°,B0A1=1A1C1=1.4,则A0A1=A1B0sin∠A1B0A0=1.4×=1.1.

又∵AA3=A3A1=A1A1=A1A0=1.1,则AA0=4×1.1=4.2.故答案为:不稳定性,4.2.【点睛】本题考查了解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、﹣3≤xP≤3,且xp≠1.【解析】

因为点P、Q是线段CG上的互反等点,推出点P在线段CC′上,由此可确定点P的横坐标xP的取值范围;【详解】如图,设C关于y轴的对称点C′(﹣3,8).由于点P与点Q互为反等点.又因为点P,Q是线段CG上的反等点,所以点P只能在线段CC′上,所点P的横坐标xP的取值范围为:﹣3≤xP≤3,且xp≠1.故答案为:﹣3≤xP≤3,且xp≠1.【点睛】本题考查坐标与图形的性质、点A与点B互为反等点的定义等知识,解题的关键是灵活运用所学知识解决问题,所以中考常创新题目.17、≠【解析】若分式有意义,则≠0,∴a≠18、5.【解析】

由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【详解】证明:∵BD为∠ABC的平分线,∴∠EBD=∠CBD,又∵EF∥BC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴EB=ED,同理FC=FD,又∵EF=ED+DF,∴EF=EB+FC=5.【点睛】此题考查等腰三角形的判定与性质,平行线的性质,解题关键在于得出∠EBD=∠EDB三、解答题(共66分)19、(1)进价为36元,售价为48元;(2)当售价为46元时,商店每天获利最大,最大利润为:200元.【解析】

(1)根据题意,设一个垃圾分类桶的进价为x元,则售价为(x+12)元,列出方程,解方程即可得到答案;(2)根据题意,可设每天获利为w,当垃圾分类桶的售价为y元时,每天获利w最大,然后列出方程,解出方程即可得到答案.【详解】解:(1)设一个垃圾分类桶的进价为x元,则售价为(x+12)元,则,解得:,∴售价为:36+12=48元.答:一个垃圾分类桶的进价为36元,售价为48元;(2)设每天获利为w,当一个垃圾分类桶的售价为y元时,每天获利最大,则,整理得:;∴当时,商店每天获利最大,最大利润为:200元.【点睛】该题以二次函数为载体,以二元一次方程组的应用、二次函数的性质及其应用为考查的核心构造而成;解题的关键是深入把握题意,准确找出命题中隐含的数量关系;灵活运用有关性质来分析、判断、解答.20、(1)A将被录用;(2)C将被录用.【解析】

(1)根据算术平均数的计算公式进行计算即可,(2)根据加权平均数的计算公式进行计算即可【详解】解:的平均成绩为:分,B的平均成绩为:分,C的平均成绩为:分,则根据三项测试的平均成绩确定录用教师,A将被录用,的测试成绩为:分,B的测试成绩为:分,C的测试成绩为:分,则按2:1:3的比例确定其重要性,C将被录用.【点睛】本题主要考查算术平均数和加权平均数的计算公式,解决本题的关键是要熟练掌握算术平均数和加权平均数的计算公式.21、【解析】

试题分析:解:+=1经检验:是原方程的解.【点睛】本题考查解分式方程,只需学生熟练掌握解方程的一般步骤,即可完成,注意分式方程结果要检验.22、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2【解析】

(1)根据三角形的面积公式求解;(2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;(3)根据S△BDF=S△BDC可得S△BCH=S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.【详解】(1)∵当点E与点D重合时,

∴CE=CD=6,

∵四边形ABCD,四边形CEFG是正方形,

∴DF=CE=AD=AB=6,

∴S△BDF=×DF×AB=1,当点E为CD的中点时,如图,连接CF,∵四边形ABCD和四边形CEFG均为正方形;

∴∠CBD=∠GCF=25°,

∴BD∥CF,

∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,故答案为:1,1.(2)S△BDF=S正方形ABCD,证明:连接CF.∵四边形ABCD和四边形CEFG均为正方形;∴∠CBD=∠GCF=25°,∴BD∥CF,∴S△BDF=S△BDC=S正方形ABCD;(3)由(2)知S△BDF=S△BDC,∴S△BCH=S△DFH=,∴,∴,,∴,∴EF=2,∴正方形CEFG的边长为2.【点睛】本题是四边形综合题,考查了正方形的性质,三角形的面积公式,平行线的性质,灵活运用这些性质进行推理是本题的关键.23、(2)40;(2)当0≤t≤2时,d2=﹣60t+60;当2<t≤3时,d2=60t﹣60;(3)当0≤t<2.5时,两遥控车的信号不会产生相互干扰.【解析】

(2)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的2.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.【详解】(2)乙的速度v2=220÷3=40(米/分),(2)v2=2.5v2=2.5×40=60(米/分),60÷60=2(分钟),a=2,d2=;(3)d2=40t,当0≤t<2时,d2-d2>20,即-60t+60+40t>20,解得0≤t<2.5,∵0≤

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论