版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里 B.45海里 C.20海里 D.30海里2.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0 B.1 C.2 D.33.如图,点为的平分线上的一点,于点.若,则到的距离为()A.5 B.4 C.3.5 D.34.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环方差/环请你根据表中数据选一人参加比赛,最合适的人选是()A.甲 B.乙 C.丙 D.丁5.如图,D、E分别是AB、AC的中点,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DEC.CF<BD D.EF>DE6.生物刘老师对本班50名学生的血型进行了统计,列出如下统计表.则本班O型血的有()血型A型B型AB型O型频率0.340.30.260.1A.17人 B.15人 C.13人 D.5人7.下列交通标志是轴对称图形的是()A. B. C. D.8.如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是()A.18 B.10 C.9 D.89.下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某校八一班同学的身高情况进行调查C.对某校的卫生死角进行调查D.对全县中学生目前的睡眠情况进行调查10.若关于x的一元二次方程(x-a)2=4,有一个根为1,则a的值是().A.3B.1C.-1D.-1或3二、填空题(每小题3分,共24分)11.分式方程的解为_____.12.如图,在菱形中,,,点E,F分别是边,的中点,是上的动点,那么的最小值是_______.13.关于的一元二次方程有实数根,则的取值范围是_____.14.如图,正方形ABCD的面积为,则图中阴影部分的面积为______________.15.下表是某校女子羽毛球队队员的年龄分布:年龄/岁13141516人数1121则该校女子排球队队员年龄的中位数为__________岁.16.如图,如果甲图中的阴影面积为S1,乙图中的阴影面积为S2,那么=________.(用含a、b的代数式表示)17.的平方根为_______18.计算:(1+)2×(1﹣)2=_____.三、解答题(共66分)19.(10分)计算:(1)(2)(3)20.(6分)某水果专卖店销售樱桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每千克降低1元,则平均每天的销售可增加10千克,请回答:(1)写出售价为50元时,每天能卖樱桃_____千克,每天获得利润_____元.(2)若该专卖店销售这种樱桃要想平均每天获利2240元,每千克樱桃应降价多少元?(3)若该专卖店销售这种樱桃要想平均每天获利最大,每千克樱桃应售价多少元?21.(6分)甲乙两车沿直路同向匀速行驶,甲、乙两车在行驶过程中离乙车出发地的路程与出发的时间的函数关系加图1所示,两车之间的距离与出发的时间的函数关系如图2所示.(1)图2中__________,__________;(2)请用待定系数法求、关于的函数解析式;(不用写自变量取值范围)(3)出发多长时间,两车相距?22.(8分)在矩形中,点在上,,,垂足为.(1)求证:;(2)若,且,求.23.(8分)将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.(1)求点G的坐标;(2)求直线EF的解析式;(3)设点P为直线EF上一点,是否存在这样的点P,使以P,F,G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.24.(8分)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).(1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;(2)比较购买同样多的笔时,哪种方式更便宜;(3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.25.(10分)随着生活水平的提高,人们对饮水质量的需求越来越高,我市某公司根据市场需求准备销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用48000元购进A型净水器与用36000元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共400台进行销售,其中A型的台数不超过B型的台数,A型净水器每台售价1500元,B型净水器每台售价1100元,怎样安排进货才能使售完这400台净水器所获利润最大?最大利润是多少元?26.(10分)在平面直角坐标系,直线y=2x+2交x轴于A,交y轴于D,(1)直接写直线y=2x+2与坐标轴所围成的图形的面积(2)以AD为边作正方形ABCD,连接AD,P是线段BD上(不与B,D重合)的一点,在BD上截取PG=,过G作GF垂直BD,交BC于F,连接AP.问:AP与PF有怎样的数量关系和位置关系?并说明理由;(3)在(2)中的正方形中,若∠PAG=45°,试判断线段PD,PG,BG之间有何关系,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),
则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)故选:D.【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.2、B【解析】试题分析:∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③故选B.考点:一次函数的性质.3、B【解析】
如图,作DH⊥OB于H.利用角平分线的性质定理即可解决问题.【详解】如图,作DH⊥OB于H.∵OC平分∠AOB,DE⊥OA,DH⊥OB,∴DE=DH=4,故选B.【点睛】本题考查角平分线的性质定理,解题的关键是学会添加常用辅助线.4、A【解析】
根据方差的意义求解可得.【详解】∵四人的平均成绩相同,而甲的方差最小,即甲的成绩最稳定,
∴最合适的人选是甲,
故选:A.【点睛】本题考查方差,解答本题的关键是明确题意,掌握方差的意义.5、B【解析】
首先根据E是AC的中点得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.【详解】∵E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵∠ADE=∴△ADE≌△CFE(AAS),∴DE=FE.故选B.【点睛】本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.6、D【解析】
频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的分量.【详解】解:本班O型血的有50×0.1=5(人),
故选:D.【点睛】本题考查了频率与频数,正确理解频率频数的意义是解题的关键.7、C【解析】试题分析:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选C.点睛:此题主要考查了轴对称图形的概念.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.8、C【解析】
首先判断OE是△ACD的中位线,再由O,E分别为AC,AD的中点,得出,DE=AD=BC,DO=BD,AO=CO,再由△BCD的周长为18,可得OE+OD+ED=9,这样即可求出△DEO的周长.【详解】解:∵E为AD中点,四边形ABCD是平行四边形,∴DE=AD=BC,DO=BD,AO=CO,∴OE=CD,∵△BCD的周长为18,∴BD+DC+BC=18,∴△DEO的周长是DE+OE+DO=(BC+DC+BD)=×18=9,故选:C.【点睛】考核知识点:本题考查了平行四边形的性质及三角形的中位线定理,解答本题注意掌握中位线的性质及平行四边形对边相等、对角线互相平分的性质.9、D【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,判断即可.【详解】解:A、审核书稿中的错别字适合全面调查;B、对某校八一班同学的身高情况进行调查适合全面调查;C、对某校的卫生死角进行调查适合全面调查;D、对全县中学生目前的睡眠情况进行调查适合抽样调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、D【解析】试题分析:由题意把代入方程,即可得到关于a的方程,再解出即可.由题意得,解得-1或3,故选D.考点:方程的根的定义,解一元二次方程点评:解题的关键是熟练掌握方程的根的定义:方程的根就是使方程左右两边相等的未知数的值.二、填空题(每小题3分,共24分)11、x=﹣3【解析】
根据分式的方程的解法即可求出答案.【详解】解:,∴,∴(3﹣x)(1+x)=x(1﹣x),解得:x=﹣3,故答案为:x=﹣3【点睛】本题考查分式方程,解题的关键是熟练运用分式的方程的解法,本题属于基础题型.12、5【解析】
设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,根据菱形的性质推出N是AD中点,P与O重合,推出PE+PF=NF=AB,根据勾股定理求出AB的长即可.【详解】设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,∴PN=PE,∵四边形ABCD是菱形,∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,∵E为AB的中点,∴N在AD上,且N为AD的中点,∵AD∥CB,∴∠ANP=∠CFP,∠NAP=∠FCP,∵AD=BC,N为AD中点,F为BC中点,在△ANP和△CFP中∵,∴△ANP≌△CFP(ASA),∴AP=CP,即P为AC中点,∵O为AC中点,∴P、O重合,即NF过O点,∵AN∥BF,AN=BF,∴四边形ANFB是平行四边形,∴NF=AB,∵菱形ABCD,∴AC⊥BD,OA=AC=4,BO=BD=3,由勾股定理得:AB==5,故答案为:5.【点睛】此题考查轴对称-最短路线问题,菱形的性质,解题关键在于作辅助线13、或【解析】
根据一元二次方程根的判别式与根的情况的关系,求解判别式中的未知数.【详解】一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即,当时,方程有2个实数根,当时,方程有1个实数根(2个相等的实数根),当时,方程没有实数根.一元二次方程有实数根,则,可求得或.【点睛】本题考查根据一元二次方程根的判别式.14、【解析】试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.15、15.【解析】
中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.【详解】解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.故答案为:15【点睛】本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).16、【解析】
左边阴影部分用大正方形面积减小正方形的面积,右边阴影部分的面积等于长乘以宽,据此列出式子,再因式分解、约分可得【详解】解:,故答案为:.【点睛】本题主要考查因式分解的应用及分式的化简,根据图示列出面积比的算式是解题的关键.17、【解析】
利用平方根立方根定义计算即可.【详解】∵,∴的平方根是±,故答案为±.【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.18、1【解析】
根据积的乘方法则及平方差公式计算即可.【详解】原式=2.=.=1.故答案为1.【点睛】本题考查积的乘方及平方差公式,熟练掌握并灵活运用是解题关键.三、解答题(共66分)19、(1)4;(2);(3)【解析】
(1)先算括号里面的,再算加减,即可得出答案;(2)先除法,再进行通分运算,最后化简,即可得出答案;(3)先对括号里面的进行通分,再进行分式的除法运算,即可得出答案.【详解】解(1)原式=-1+1+4=4(2)原式====(3)原式===【点睛】(1)本题主要考查,以及负指数幂,注意;(2)本题主要考查分式的混合运算,通分、约分、因式分解和约分是解答本题的关键;(3)本题主要考查分式的混合运算,通分、约分、因式分解和约分是解答本题的关键.20、2002000(2)4元或6元(3)当销售单价为55元时,可获得销售利润最大【解析】试题分析:(1)根据每天能卖出樱桃=100+10×(60﹣10)计算即可得到每天卖的樱桃,根据利润=单价×数量计算出每天获得利润;(2)设每千克樱桃应降价x元,根据每千克的利润×数量=2240元,列方程求解;(3)设每千克樱桃应降价x元,根据利润y=每千克的利润×数量,列出函数关系式,利用配方法化成顶点式即可求出答案.解:(1)售价为50元时,每天能卖出樱桃100+10×(60﹣10)=200千克,每天获得利润(50﹣40)×200=2000元,故答案为200、2000;(2)设每千克樱桃应降价x元,根据题意得:(60﹣40﹣x)(100+10x)=2240,整理得:x2﹣10x+24=0,x=4或x=6,答:每千克核桃应降价4元或6元;(3)设降价为x元,利润y=(60﹣40﹣x)(100+10x)=﹣10x2+100x+2000=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∴当x=5时,y的值最大.60-5=55元.答:当销售单价为55元时,可获得销售利润最大.点睛:本题考查了利润的计算方法,一元二次方程的实际应用,二次函数的实际应用,利用基本数量关系利润=每千克的利润×数量,列出方程和函数关系式是解答本题的关键.21、(1)100,500;(2)、;(3)出发,两车相距.【解析】
(1)结合图1和图2即可知道,两车开始距离为b=500,两车相遇时间为a=100(2)利用待定系数法即可求出、关于的函数解析式,将点(500,0)和点(100,2500)代入的解析式,将点(100,2500)代入的解析式,解方程即可【详解】解:(1)100,500(2)设,,由题意得,,.解得,.∴、关于的函数解析式分别为、.(3)由题意可知,.∵.解得,出发,两车相距.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键.22、(1)见解析;(2)AD=.【解析】
(1)利用“AAS”证明△ADF≌△EAB即可得;(2)证明△AFD是等腰直角三角形,得出AF=DF=AB=4,利用勾股定理即可求出AD.【详解】(1)证明:在矩形ABCD中,AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,在△ADF和△EAB中,,∴△ADF≌△EAB(AAS),∴DF=AB;(2)解:∵∠FEC=135°,∴∠AEB=180°−∠FEC=45°,∴∠DAF=∠AEB=45°,∴△AFD是等腰直角三角形,∴AF=DF=AB=4,∴AD=.【点睛】本题主要考查矩形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质及勾股定理;熟练掌握矩形的性质,证明三角形全等是解题的关键.23、(1)G点的坐标为:(3,4-);(2)EF的解析式为:y=x+4-2;(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)【解析】分析:(1)点G的横坐标与点N的横坐标相同,易得EM为BC的一半减去1,为1,EG=CE=2,利用勾股定理可得MG的长度,4减MG的长度即为点G的纵坐标;(2)由△EMG的各边长可得∠MEG的度数为60°,进而可求得∠CEF的度数,利用相应的三角函数可求得CF长,4减去CF长即为点F的纵坐标,设出直线解析式,把E,F坐标代入即可求得相应的解析式;(3)以点F为圆心,FG为半径画弧,交直线EF于两点;以点G为圆心,FG为半径画弧,交直线EF于一点;做FG的垂直平分线交直线EF于一点,根据线段的长度和与坐标轴的夹角可得相应坐标.详解:(1)易得EM=1,CE=2,∵EG=CE=2,∴MG=,∴GN=4-;G点的坐标为:(3,4-);(2)易得∠MEG的度数为60°,∵∠CEF=∠FEG,∴∠CEF=60°,∴CF=2,∴OF=4-2,∴点F(0,4-2).设EF的解析式为y=kx+4-2,易得点E的坐标为(2,4),把点E的坐标代入可得k=,∴EF的解析式为:y=x+4-2.(3)P1(1,4-)、P2(,7-2),P3(-,2-1)、P4(3,4+)点睛:本题综合考查了折叠问题和相应的三角函数知识,难点是得到关键点的坐标;注意等腰三角形的两边相等有多种不同的情况.24、(1)y甲=5x+60,y乙=4.5x+72;(2)当购买笔数大于24支时,乙种方式便宜;当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以;当购买笔数大于4支而小于24支时,甲种方式便宜;(3)用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.【解析】分析:(1)根据购买的费用等于书包的费用+笔的费用就可以得出结论;(2)由(1)的解析式,分情y甲>y乙时,况y甲=y乙时和y甲<y乙时分别建立不等式和方程讨论就可以求出结论;(3)由条件分析可以得出用一种方式购买选择甲商场求出费用,若两种方法都用设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用为y,再根据一次函数的性质就可以求出结论.详解:(1)由题意,得:y甲=20×4+5(x﹣4)=5x+60,y乙=90%(20×4+5x)=4.5x+72;(2)由(1)可知当y甲>y乙时5x+60>4.5x+72,解得:x>24,即当购买笔数大于24支时,乙种方式便宜.当y甲=y乙时,5x+60=4.5x+72解得:x=24,即当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以.当y甲<y乙时,5x+60<4.5x+72,解得:x<24,即当购买笔数大于4支而小于24支时,甲种方式便宜;(3)用一种方法购买4个书包,12支笔时,由12<24,则选甲种方式需支出y=20×4+8×5=120(元)若两种方法都用设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用y=20x+90%〔20(4﹣x)+5(12﹣x)〕(0<x≤4)y=﹣2.5x+126由k=﹣2.5<0则y随x增大而减小,即当x=4时y最小=116(元)综上所述:用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.点睛:本题考查了一次函数的解析式的运用,分类讨论的运用及不等式和方程的解法的运用,一次函数的性质的运用,解答时先表示出两种购买方式的解析式是解答第二问的关键,解答第三问灵活运用一次函数的性质是难点.25、(1)每台A型净水器的进价为2元,每台B型净水器的进价为1元;(2)购进4台A型净水器,4台B型净水器,可使售完这400台净水器所获利润最大,最大利润是100000元.【解析】
(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,根据数量=总价÷单价结合用48000元购进A型净水器与用36000元购进B型净水器的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设最大利润是W元,由总利润=单台利润×进货数量,即可得出W关于x的函数关系式,由A型的台数不超过B型的台数,可得出关于x的一元一次不等式,解之即可得出x的取值范围,再利用一次函数的性质即可解决最值问题.【详解】(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:解得:x=1.经检验,x=1是原方程的解,且符合题意,∴x+300=2.答:每台A型净水器的进价为2元,每台B型净水器的进价为1元.(2)设最大利润是W元.∵购进x台A型净水器,∴购进(400﹣x)台B型净水器,依题意,得:W=(1500﹣2)x+(1100﹣1)(400﹣x)=100x+3.∵A型的台数不超过B型的台数,∴x≤400﹣x,解得:x≤4.∵100>0,∴W随x值的增大而增大,∴当x=4时,W取得最大值,最大值为100
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物标志物在药物临床试验中的药物研发技术研究
- 生物材料支架在皮肤再生中的临床应用推广策略
- 生物材料临床应用中的卫生技术评估与医保准入策略
- 生物制品稳定性指示分析方法开发与验证
- 生物制剂失应答后IBD的特殊人群用药策略-1
- 食品检验员面试题及质量标准解析
- 副总经理面试题集及答案
- 甜味剂在儿童糖尿病饮食中的安全性
- 保险代理人职位面试问题集
- 助航灯光设备维修技能考试题库
- 2025房屋买卖合同公证书范文
- 气管切开患者的管理与康复治疗
- 《中国急性肾损伤临床实践指南(2023版)》解读
- 2025高考化学专项复习:60个高中化学常考实验
- 江苏自考现代企业经营管理-练习题(附答案)27875
- 场地空地出租合同范本
- 大学体育与科学健身智慧树知到期末考试答案2024年
- 月子中心员工礼仪培训方案
- 电镀制造成本预估表
- 2023大型新能源集控中心建设项目技术方案
- 2023年研究生类社会工作硕士(MSW)考试题库
评论
0/150
提交评论