产生人工智能和坚实的价值 Generative AI and Firm Values_第1页
产生人工智能和坚实的价值 Generative AI and Firm Values_第2页
产生人工智能和坚实的价值 Generative AI and Firm Values_第3页
产生人工智能和坚实的价值 Generative AI and Firm Values_第4页
产生人工智能和坚实的价值 Generative AI and Firm Values_第5页
已阅读5页,还剩108页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

NBERWORKINGPAPERSERIES

GENERATIVEAIANDFIRMVALUES

AndreaL.Eisfeldt

GregorSchubert

MiaoBenZhang

WorkingPaper31222

/papers/w31222

NATIONALBUREAUOFECONOMICRESEARCH

1050MassachusettsAvenue

Cambridge,MA02138

May2023

GregorSchubertgratefullyacknowledgesfundingfromtheUCLAFinkCenterforFinanceandtheUCLAEastonTechnologyManagementCenter.TheviewsexpressedhereinarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheNationalBureauofEconomicResearch.

NBERworkingpapersarecirculatedfordiscussionandcommentpurposes.Theyhavenotbeenpeer-reviewedorbeensubjecttothereviewbytheNBERBoardofDirectorsthataccompaniesofficialNBERpublications.

©2023byAndreaL.Eisfeldt,GregorSchubert,andMiaoBenZhang.Allrightsreserved.Shortsectionsoftext,nottoexceedtwoparagraphs,maybequotedwithoutexplicitpermissionprovidedthatfullcredit,including©notice,isgiventothesource.

GenerativeAIandFirmValues

AndreaL.Eisfeldt,GregorSchubert,andMiaoBenZhang

NBERWorkingPaperNo.31222

May2023

JELNo.E0,G0

ABSTRACT

WhataretheeffectsofrecentadvancesinGenerativeAIonthevalueoffirms?OurstudyoffersaquantitativeanswertothisquestionforU.S.publiclytradedcompaniesbasedontheexposuresoftheirworkforcetoGenerativeAI.Ournovelfirm-levelmeasureofworkforceexposuretoGenerativeAIisvalidatedbydatafromearningscalls,andhasintuitiverelationshipswithfirmandindustry-levelcharacteristics.UsingArtificialMinusHumanportfoliosthatarelongfirmswithhigherexposuresandshortfirmswithlowerexposures,weshowthathigher-exposurefirmsearnedexcessreturnsthatare0.4%higheronadailybasisthanreturnsoffirmswithlowerexposuresfollowingthereleaseofChatGPT.Althoughthisreleasewasgenerallyreceivedbyinvestorsasgoodnewsformoreexposedfirms,thereiswidevariationacrossandwithinindustries,consistentwiththesubstantivedisruptivepotentialofGenerativeAItechnologies.

AndreaL.EisfeldtMiaoBenZhang

AndersonSchoolofManagementUniversityofSouthernCalifornia

UniversityofCaliforniaatLosAngeles701ExpositionBlvd

110WestwoodPlazaHOH-722

SuiteC4.10LosAngeles,CA90089

LosAngeles,CA90095miao.zhang@

andNBER

andrea.eisfeldt@

GregorSchubert

UCLAAnderson

SchoolofManagement

gregor.schubert@

1

RecentadvancesinGenerativeArtificialIntelligencearewidelyseenasamajortechnologyshockwithimportantimplicationsforfirmvalues.Relativetoearlierartificialintelligencemodels,GenerativeAImodelscandigestmorecomplexinputs,andcanproducehuman-likeoutput,makingGenerativeAImoreversatileandscalablethanpriorinnovationsinAIandmachinelearning.Asaresult,GenerativeAIhasthepotentialforwidespreadcorporateadoption,withimplicationsforfirmvaluesbothacrossandwithinawidearrayofindustries. OneofthebiggestquestionssurroundingadvancesinGenerativeAIiswhateffectthesetechnologieswillhaveoncorporatevaluationsasaresultoftheimpactofGenerativeAIonfirms’laborinputs.Weconstructanoveldatasetcontainingfirm-levelworkforceexposurestoGenerativeAI.WeprovideaquantitativemeasureoftheimpactofGenerativeAIbasedonourfirm-levelexposuredatacombinedwithfinancialmarketdata.UsingthismeasurewecomputethefirstestimatesoftheeffectofGenerativeAIonfirmvaluesbystudyingtheimpactofthereleaseofChatGPTonfirmswithvaryingexposurestothetechnologyshock.

1

WemeasuretheimpactofamajoreventintheadvancementanddisseminationofGen-erativeAItechnology,namely,thepublicreleaseofChatGPT,onequityreturnsatthefirmlevel.Thiseventhadasubstantialimpactonfirmreturns,consistentwithGenerativeAIadvancementrepresentingamajortechnologicalshock,oneforwhichwecanmeasurethearrivalandimpactinrealtime.Whilefirmsmayprogressivelyadoptthetechnology,theunmatchedmediaattentionanduserbasethatChatGPThasgarneredwithinjustmonthsindicatesthatfirmsandinvestorsareactivelyassessingthepotentialfastdiffusionofthistechnology.WeshowthatTwittermentionsandearningscallmentionsofGenerativeAIincreasedsubstantiallyfollowingthereleaseofChatGPT.Moreover,themassiveinformationgatheringandprocessingabilityofChatGPTitselfallowsustoassesseachfirm’sexposuretoChatGPT’sdisruptioninreal-time.

OurkeyfindingisthatthearrivalofChatGPThadasizablepositiveeffectonthevalueoffirmswhoselaborforcesaremoreexposedtoGenerativeAIandrelatedLargeLanguageModels(LLMs).FirmswithhigherexposuretothereleaseofChatGPT,asmeasuredbytheexposureoftheirlaborforcetobeingmademoreproductivebytoolslikeChatGPT,outperformfirmswithlowerexposuresbyover40basispointsindailyexcessreturnsduringthetwoweeksfollowingitsrelease.Notably,thesereturndifferencesarenotonlyduetodifferencesinlaborforceexposuresacrossindustries.Returnsoffirmswithhighlaborforceexposuresalsooutperformfirmswithlowexposuresbyabout40basispointsdailyin

1RecentstudiesofGenerativeAIinclude

Eloundou,Manning,Mishkin,andRock

(

2023

)whostudytheimpactofGenerativeAIonindustries’laborforces,

NoyandZhang

(

2023

)whostudythedisplacementeffectsofGenerativeAIonprofessionalwritingtasks,and

Brynjolfsson,Li,andRaymond

(

2023

)whostudytheeffectsofGenerativeAIoncustomersupportagents,and

Felten,Raj,andSeamans

(

2023

)whoconsiderheterogeneityinoccupationalexposure.

2

industry-neutralportfolios.

OurmethodologybuildsontheideathatChatGPTandrelatedtechnologieswillin-creasefirm-levelfreecashflowsthroughalaboreffectthatcanworkthroughtwopotentialchannels.First,firmswhoselaborforcecanbesubstitutedforwithcheaperGenerativeAI-basedcapitalwillexperiencehigherfreecashflowsbyloweringinputcosts.

2

Second,firmswhoselaborinputsaremorecomplementarytoGenerativeAIwillexperiencehighercashflowsduetothetechnologicalimprovementinaninputthatiscomplementarytotheirworkforce.

3

Whilewedonottakeastandonwhether(andforwhichworkers)GenerativeAIisasubstitutefor,oracomplementaryto,labor,weareabletoshowthatfirmsthathaveahighershareofoccupationsexposedtoGenerativeAIexperiencegainsinvalueacrossawidearrayofindustries.Atthesametime,theeffectofthereleaseofChatGPTonfirmvaluesvarieswidelyacrossindustries,aswellaswithinindustriesacrossfirms.Indeed,wefindasignificantlynegativeimpactfromthereleaseofChatGPTforsomeindustries.Value

lossesforincumbentsareconsistentwiththeideathatforsomeindustriesGenerativeAIwillleadtonewentrantsanddisplacementofexistingfirms.WhileadvancesinGenerativeAIcanhaveeffectsthroughtheproductmarketaswellasthroughthelabormarket(forexample,increasingdemandforcloudcomputingservices),ourresultssupporttheideathatAIadvanceswillhaveabroadimpactontheeconomythroughitseffectsonlaborinputs.

ThefactthattheoverallimpactofthearrivalofChatGPTonfirmswithmoreexposuretoGenerativeAIissignificantlypositiveisconsistentwithrecentstudiesshowingthatitisincreasinglymoredifficultfornewentrantstodisplaceincumbentfirms.

4

Wemeasurefirm-levelexposuretoGenerativeAIintwosteps.First,webuildon

Eloun-

douetal.

(

2023

)anduseChatGPTitselftoassesswhethereachofthe19,265taskscur-rentlyperformedbyvariousoccupationscanbedonebythecurrentChatGPTorbyfutureChatGPTafterinvestmentinadditionalcapabilities.Following

Eloundouetal.

(

2023

),weaggregatethetask-levelexposuremeasurestotheoccupationsintheO*NETdatabase.Sec-ond,andnoveltoouranalysis,wemapoccupationstopublicly-tradedfirmsusingdatafromRevelioLabs.ThisdatasetisconstructedfrommillionsofpublicemployeeprofilessuchasLinkedIn.Ourfirm-levelexposuremeasurethuscapturestheabilityofthetaskscurrentlyperformedbylaboratthosefirmstobeperformed(ormademoreefficient)byGenerativeAI.Tothebestofourknowledge,ourstudyisthefirsttocreateafirm-levelmeasureofexposuretoGenerativeAI.

Wenextvalidateourlabor-basedmeasureoffirms’exposuretoGenerativeAIbyexamin-

2See

Autor,Levy,andMurnane

(

2003

)and

Zhang

(

2019

)formeasuresoffirmexposuretoautomationand

Webb

(

2019

)and

LaneandSaint-Martin

(

2021

)fortheimpactofAIonfirms.

3See

Krusell,Ohanian,R´ıos-Rull,andViolante

(

2000

)and

Eisfeldt,Falato,andXiaolan

(

2022

).

4See,forexample,

Guti´errezandPhilippon

(

2019

)and

AkcigitandAtes

(

2020

).

3

ingfirms’earningscalltranscriptsin2023.WedocumentastrongrelationshipbetweenourmeasureofexposuretoGenerativeAIandfirms’discussionsofGenerativeAIandrelatedtechnologiesinfirms’earningscallsfollowingthereleaseofChatGPT.Incontrast,firmswithhigherexposuretoGenerativeAIdonotincreasediscussionscommontechnologicaltopicssuchasEngineeringfollowingthereleaseofChatGPT.Moreover,thesefindingsremainevenafterweexcludeallfirmsfromthemostIT-relatedsectors,

5

suggestingthatfirms’recentdiscussionsaboutGenerativeAIgobeyonditsimpactonrelatedproducts,andextendtotheimpactonoperationsincludinglaborinputs.

WestartbyshowingthetypesofoccupationsthatwillbeaffectedbyadvancesinGen-erativeAI.Wefindthatthemostaffectedoccupationsarethosethatinvolvenon-routinecognitivetasks.Thisisinstarkcontrastwithpriorfindingsthatautomationmainlydis-placesoccupationsinvolvingroutinetasks(

Autoretal.

(

2003

)).Indeed,themostaffectedoccupationsarethosewithahighshareofnon-routinecognitiveanalyticaltasksorroutinecognitivetasks,whilemanualphysicaltasksarerelativelyunaffected.InterpersonaltaskslieinbetweencognitiveandmanualtasksintermsoftheirexposuretoGenerativeAI.Occupa-tionswithhigherwagesalsohavehigherexposuretoGenerativeAI.Ourresultisconsistentwithrecentfindingsby

Kogan,Papanikolaou,Schmidt,andSeegmiller

(

2019

),whofindthattechnologicaladvancesimpactworkersatthehigherendofthewagedistribution.

ExposuretoGenerativeAIthroughfirms’laborinputshasanintuitiverelationshiptoaveragefirmcharacteristicsacrossandwithinindustries.Attheindustrylevel,moreexposedsectorshavehigherwages,consistentwiththosesectorsemployingmoreworkersinhigher-paidoccupationsthatalsotendtobemoreexposedtoGenerativeAI.Regardinglaborinputs,firmsinmoreexposedindustriestendtohavehigherlaborintensityintermsofthenumberofemployeesperunitofcapital,andlowerassettangibility.Moreexposedfirmsalsohavehigherratiosoforganizationaltototalcapital.

6

Forthecharacteristicsrelatedtofirmvaluation,moreexposedsectorshaveloweraveragefirmsizeasmeasuredbytotalassetsandhigherTobin’sQ.Importantly,wealsoobservesimilarrelationshipsbetweenfirms’exposuretoGenerativeAIandfirmcharacteristicswithinindustrysectors.Therobustpatternsofvariationinindustryandfirm-levelexposureswithfirmcharacteristicssupportourstudyofstockreturnsbothacrossandwithinindustries.

FirmswithhigherexposuretoGenerativeAIexperiencehighervolatilityaroundthereleaseofChatGPT.However,itappearsthatittakessometimefortheinformationinChatGPT’sreleasetobeimpoundedintostockprices.Thecumulativeexcessreturnsfor

5Tobeprecise,weexcludetheNAICS51“Information”andNAICS54“Professional,Scientific,andTechnicalServices”sectors.

6See

EisfeldtandPapanikolaou

(

2014

)and

EisfeldtandPapanikolaou

(

2013

).

4

Figure1:GenerativeAIexposurequintileportfolioreturnsovertime:marketfactor-adjusted.Thegraphshowsthecumulativeexcessrealizedreturnsonportfoliosbasedonvalue-weightedsorts.Allportfolioreturnsshownarenetoftherisk-freerate.ThedatasetconsistsofdailystockreturnsfromYahooFinanceforNov.15,2022-March31,2023.Thefigureshowsreturnsadjustedformarketfactorexposure.

thehighest-exposurequintileoffirmsvs.thelowest-exposurequintiledivergeforseveralweeksfollowingthereleaseofChatGPT.Figure

1

plotsthereturnsofthehighest-exposurequintile,thelowest-exposurequintile,andalong-shortportfolio,whichwedenoteAMHfor“ArtificialMinusHuman”.CumulativereturnstoholdingtheAMHportfoliothatislongthehighest-exposurequintile,andshortthelowest-exposurequintilefromthereleaseddatethroughMarch31,2023,areover9%.

WestudytheeffectofGenerativeAIonfirmvaluesbycomparingthereturnsoffirmswithhigherandloweroccupationalexposuretoGenerativeAIduringandoutsidethetwo-weekwindowfollowingthereleaseofChatGPTonNovember30,2022.Theeffectsaresubstantial,andmonotonic,withinindustriesacrossGenerativeAI-exposurequintiles.Adjustingforthemarketfactor,theexcessreturnstoquintileportfoliosformedbasedonfirm-leveloccupa-tionalexposuretoGenerativeAIaremonotonicallyincreasing,withthehighest-exposurequintileoffirmswithinindustriesearningpositiveexcessdailyreturnsofover40basispointswhilethelowestexposurequintileexperiencesnegativeexcessreturnsofaround25basispoints.ThefactthatthesestrongeffectsexistwithinindustriesformanyindustriesprovidesevidencethatGenerativeAIcanhaveabroadimpactonfirmvaluesthroughtheeffectsontheirlaborinputs.

5

Acrossindustries,theeffectsofGenerativeAIonfirmvaluealsovarywidely.Publishing,informationandcomputing-relatedindustrieshavepositivereturnsfollowingthereleaseofChatGPT,whilefinanceandtransportation-relatedindustriesexperiencenegativereturnsoverall.Dispersioninindustryreturnsismuchhigherduringthetwo-weekperiodfollowingthereleaseofChatGPTthanoverthefullsamplefromNovember30,2022toMarch31,2023overall.

Ourwithin-industryresultsalsodisplaystrikingdifferencesacrossindustrysectors.Withinfinance,thereturnofmoreexposedfirmsrelativetolessexposedfirmsissubstantiallyandsignificantlypositive.Combinedwiththeoverallnegativeindustryeffect,thisisconsistentwithsomefirmsbenefittinggreatlyfromGenerativeAIadvanceswhileoveralltheimpactofthereleaseofChatGPTwasnegativeforvalueinthefinanceindustry.FirmswithhigherexposurestoGenerativeAIwithinmanufacturingaswellastheadministrativesupport,wastemanagement,andremediationservicesindustryalsosignificantlyoutperformfirmswithlowerexposures.Ontheotherhand,firmswithhigherexposuresintherealestateandrentalandleasingindustrysignificantlyunderperformfirmswithlowerexposures.ThiscouldmeanthatexistingfirmswithlargeexposurestoGenerativeAImaybedisplacedbynewentrantsinthoseindustries.Finally,severalindustriesdonotdisplaysignificantre-turnspreadsfollowingthereleaseofChatGPT,includingconstructionofbuildings,mining,andheavyandcivilengineeringconstruction.Thenegligibleimpactintheseindustriesisconsistentwithmanualtasks’lowerexposuretoGenerativeAI.

Ourstudycontributestotheliteraturestudyingtheimpactofdisruptivetechnologiesonfirmvaluations.

7

Papanikolaou

(

2011

)and

KoganandPapanikolaou

(

2014

)studytheeffectsofinvestment-specifictechnologicalchangesonassetprices.

EisfeldtandPapanikolaou

(

2013

)and

EisfeldtandPapanikolaou

(

2014

)studyfirms’exposuretotheorganizationcapitaltechnologyfrontier.

Zhang

(

2019

)studiesfirms’exposuretoroutine-biasedautomation.Inaseriesofpapers,

Babina,Fedyk,He,andHodson

(

2020

),

Babina,Fedyk,He,and

Hodson

(

2021

),and

Babina,Fedyk,He,andHodson

(

2022

)studytheeffectsofAIonfirmgrowth,compensation,andworkforcecomposition.Seealso

Webb

(

2019

)fortheimpactofAIonfirms.

Kelly,Papanikolaou,Seru,andTaddy

(

2021

)studyfirms’exposuretodisruptivetechnologicalshocksusingpatenttextualdata,and

Koganetal.

(

2019

)assessesworkerdisplacementfromtechnologicalchangeoveraverylongsample.Thesestudiesofferimportantinsightsintoinvestors’andfirms’responsestotechnologicalshocksinhistoricalsamples.

Ourstudydepartsfromtheseworksbyfocusingonmeasuringfirms’exposuretoGen-

7See

Greenwood,Hercowitz,andKrusell

(

1997

)foranearlycontributiononthelong-runimpactsofinvestment-specifictechnologicalchange.

6

erativeAIandassessinginvestors’reactiontothetechnologyshockuponitsarrival.WearguethatthereleaseofChatGPTinNovemberof2022isanobservable,largetechnologyshock.Wealsohighlightourcontributionofmeasuringinvestors’reactionstothisshockinreal-time.Indeed,theinformationinmarketpricescanpotentiallyinformemployees’andfirms’ultimateresponsestotechnologicaldisruption.Timelyassessmentofthemarket’sexpectationsofGenerativeAI’simpactonfirmscanalsohelppolicymakerstoeffectivelyevaluateregulatorypoliciesinresponsetothearrivalofthenewtechnology.

Whileothercontemporaneousorrecentstudiessuchas

Eloundouetal.

(

2023

)alsoaddresstheexposureofoccupationstoGenerativeAIadvances,ourpaperisnovelinitscontributionstotheeffectonfirms.OuruseoftheRevelioLabsdatatolinkoccupationstofirmsyieldsauniqueopportunitytostudycorporateoutcomes.

8

.

Thepaperproceedsasfollows:Section

I

describesourdataandmeasureoffirms’expo-suretoGenerativeAI.Section

II

providesdescriptivefactsaboutGenerativeAIexposuresacrossoccupations,industries,andfirms.Section

III

documentscorporatecommunicationstoinvestorsregardingGenerativeAI,andtherelationshipbetweenthosecommunicationsandourmeasureofGenerativeAIexposures.Section

IV

presentsourresultsdocumentingthesubstantialchangesinfirmvaluationsfollowingtheintroductionofChatGPT.Finally,Section

V

concludes.

I.DataandMeasurement

Wemeasureafirm’slaborexposuretoGenerativeAIintwosteps.First,wemeasureeachoccupation’sexposuretoGenerativeAIbasedontheoccupation’staskstatementsfromtheO*NETdatabase.Second,weaggregatetheoccupation-levelGenerativeAIexposuremeasuretothefirmlevelusingthefirm-occupationalemploymentdatafromtheRevelioLabsWorkforceDynamicsdatabase.

A.MeasuringoccupationalexposuretoGenerativeAI

OccupationaltaskdataToassesswhetheranoccupationwilllikelyexperienceachangeinabsoluteorrelativeproductivityasaresultofGenerativeAImodelsbecomingwidelyavailableandused,weuseatask-basedapproach.Thatis,similarto

Eloundouetal.

(

2023

),

8Indeed,aswedraftthisstudy,IBM,thecompanyranked#1inourexposuretoGen-erativeAImeasureamongthelargestU.S.firms(seeTable

II

)announcedtohalthir-ingof7,800jobsthatcouldbereplacedbyAI.See

https://www.businessinsider.

com/ibm-halts-hiring-for-7800-jobs-that-could-be-replaced-by-ai-report-2023-5?

utm_source=&utm_medium=newsletter&utm_campaign=

ibm-starts-replacing-jobs-with-ai&r=US&IR=T

7

weconsideranoccupationtobeasetoftasks-to-be-doneandevaluateforeachtaskwhetheritcanbedonemoreproductivelyusingChatGPTandsimilarlargelanguagemodels(LLMs)orfutureapplicationsthatwillbebuiltbasedontheircapabilities.

WeobtaininformationonthetasksinvolvedineachoccupationfromtheO*NETdatabase,whichprovidesalistoftaskstatementscreatedbypractitionersorexperts.

9

Ataskstate-mentisusuallyonesentence,andanoccupationhasonaverage22tasks.The19,265pairsoftaskstatementsandtheoccupationsthattheybelongtothenneedtobecodedasbeingexposedtoGenerativeAItechnologiesornot.

TaskscoringWebuildontheapproachforscoringtasksthatwassuggestedandvalidatedby

Eloundouetal.

(

2023

).Inparticular,weuseGPTitselftoscoreexposureoftasksbasedonwhetherthetaskcanalreadybedonedirectlyusingtheChatGPTinterface,orcanbedonewithadditionaltoolsbuiltontopofit.TwoadvantagesofusinganLLMtoassesstaskstatementsarethatitallowsforbetterreplicabilityoftheresearchintermsofcostandspeedofexecution,andrapidscalingofthemethodtothefullsetof19,265taskstatements.

10

Specifically,weuseOpenAI’sGPT3.5Turbomodeltoclassifythefullsetoftaskstatementsandvalidateitsreliabilityonasmallersubsampleoftasks.

11

ThemodelisgivenanoverallrubricforscoringLLMexposure,aswellastwoexampleinteractionsbetweenauserandanassistantthatshowcasethekindofoutputitisexpectedtoproduce.Then,ataskstatementissubmittedtogetherwithitsO*NETtitle,andthemodelreturnsascore.Thescorescapturewhetherthetimetakentocompletetaskisreducedbyatleasthalf,atconstantquality,iftheworkercanaccessChatGPT-liketools.Thescoresfallintothefollowingcategories:E0indicatesnoexposureasthetooliseitherinsufficientlyusefulforthistask,orcannotbebroughttobearasaresultoftheintrinsicnatureofthetask,e.g.ifitinvolvesphysicalactivities;E1isappliedifa50%reductionincompletiontimeisalreadyfeasiblewiththeexistinglargelanguagemodelinterfaces;E2requiresthatsuchaproductivitygainisfeasible,butonlyoncethecurrentcapabilitiesofthemodelcanbedeployedthroughapplicationswithfurtherinputs(e.g.accesstointernetorproprietarydatabases),orifitistrainedondomain-specificissuesordata;E3isappliedwhentheproductivityincreasewouldrequireimageprocessingcapabilitiesinadditiontocurrenttextprocessing.Importantly,the

9ThisdatacanbeaccessedviatheO*Netdatabaseat/

10Whilesimilarlarge-volumeclassificationtasksinthepastoftenreliedoncrowd-workersononlineplat-formssuchasAmazonMechanicalTurk(MTurk),ChatGPThasrecentlybeenshowntooutperformhumancrowd-workersinaccuracyintextclassificationtasks,whilealsoexhibitinglowervariabilityinscoresacrossmultiplerunsoftheprogram(

Gilardi,Alizadeh,andKubli

,

2023

).Economistshavealsorecentlyusedotherlargelanguagemodelstoclassifyunstructuredtextfromjobpostingsandfoundthattheyoutperformed

othermachinelearningmethods

Hansen,Lambert,Bloom,Davis,Sadun,andTaska

(

2023

).

11ThestructureofthepromptsubmittedtotheOpenAIGPTAPIisshowninAppendix

A

.

8

modelisaskednotonlytorespondwiththescorebu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论