版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
NBERWORKINGPAPERSERIES
GENERATIVEAIANDFIRMVALUES
AndreaL.Eisfeldt
GregorSchubert
MiaoBenZhang
WorkingPaper31222
/papers/w31222
NATIONALBUREAUOFECONOMICRESEARCH
1050MassachusettsAvenue
Cambridge,MA02138
May2023
GregorSchubertgratefullyacknowledgesfundingfromtheUCLAFinkCenterforFinanceandtheUCLAEastonTechnologyManagementCenter.TheviewsexpressedhereinarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheNationalBureauofEconomicResearch.
NBERworkingpapersarecirculatedfordiscussionandcommentpurposes.Theyhavenotbeenpeer-reviewedorbeensubjecttothereviewbytheNBERBoardofDirectorsthataccompaniesofficialNBERpublications.
©2023byAndreaL.Eisfeldt,GregorSchubert,andMiaoBenZhang.Allrightsreserved.Shortsectionsoftext,nottoexceedtwoparagraphs,maybequotedwithoutexplicitpermissionprovidedthatfullcredit,including©notice,isgiventothesource.
GenerativeAIandFirmValues
AndreaL.Eisfeldt,GregorSchubert,andMiaoBenZhang
NBERWorkingPaperNo.31222
May2023
JELNo.E0,G0
ABSTRACT
WhataretheeffectsofrecentadvancesinGenerativeAIonthevalueoffirms?OurstudyoffersaquantitativeanswertothisquestionforU.S.publiclytradedcompaniesbasedontheexposuresoftheirworkforcetoGenerativeAI.Ournovelfirm-levelmeasureofworkforceexposuretoGenerativeAIisvalidatedbydatafromearningscalls,andhasintuitiverelationshipswithfirmandindustry-levelcharacteristics.UsingArtificialMinusHumanportfoliosthatarelongfirmswithhigherexposuresandshortfirmswithlowerexposures,weshowthathigher-exposurefirmsearnedexcessreturnsthatare0.4%higheronadailybasisthanreturnsoffirmswithlowerexposuresfollowingthereleaseofChatGPT.Althoughthisreleasewasgenerallyreceivedbyinvestorsasgoodnewsformoreexposedfirms,thereiswidevariationacrossandwithinindustries,consistentwiththesubstantivedisruptivepotentialofGenerativeAItechnologies.
AndreaL.EisfeldtMiaoBenZhang
AndersonSchoolofManagementUniversityofSouthernCalifornia
UniversityofCaliforniaatLosAngeles701ExpositionBlvd
110WestwoodPlazaHOH-722
SuiteC4.10LosAngeles,CA90089
LosAngeles,CA90095miao.zhang@
andNBER
andrea.eisfeldt@
GregorSchubert
UCLAAnderson
SchoolofManagement
gregor.schubert@
1
RecentadvancesinGenerativeArtificialIntelligencearewidelyseenasamajortechnologyshockwithimportantimplicationsforfirmvalues.Relativetoearlierartificialintelligencemodels,GenerativeAImodelscandigestmorecomplexinputs,andcanproducehuman-likeoutput,makingGenerativeAImoreversatileandscalablethanpriorinnovationsinAIandmachinelearning.Asaresult,GenerativeAIhasthepotentialforwidespreadcorporateadoption,withimplicationsforfirmvaluesbothacrossandwithinawidearrayofindustries. OneofthebiggestquestionssurroundingadvancesinGenerativeAIiswhateffectthesetechnologieswillhaveoncorporatevaluationsasaresultoftheimpactofGenerativeAIonfirms’laborinputs.Weconstructanoveldatasetcontainingfirm-levelworkforceexposurestoGenerativeAI.WeprovideaquantitativemeasureoftheimpactofGenerativeAIbasedonourfirm-levelexposuredatacombinedwithfinancialmarketdata.UsingthismeasurewecomputethefirstestimatesoftheeffectofGenerativeAIonfirmvaluesbystudyingtheimpactofthereleaseofChatGPTonfirmswithvaryingexposurestothetechnologyshock.
1
WemeasuretheimpactofamajoreventintheadvancementanddisseminationofGen-erativeAItechnology,namely,thepublicreleaseofChatGPT,onequityreturnsatthefirmlevel.Thiseventhadasubstantialimpactonfirmreturns,consistentwithGenerativeAIadvancementrepresentingamajortechnologicalshock,oneforwhichwecanmeasurethearrivalandimpactinrealtime.Whilefirmsmayprogressivelyadoptthetechnology,theunmatchedmediaattentionanduserbasethatChatGPThasgarneredwithinjustmonthsindicatesthatfirmsandinvestorsareactivelyassessingthepotentialfastdiffusionofthistechnology.WeshowthatTwittermentionsandearningscallmentionsofGenerativeAIincreasedsubstantiallyfollowingthereleaseofChatGPT.Moreover,themassiveinformationgatheringandprocessingabilityofChatGPTitselfallowsustoassesseachfirm’sexposuretoChatGPT’sdisruptioninreal-time.
OurkeyfindingisthatthearrivalofChatGPThadasizablepositiveeffectonthevalueoffirmswhoselaborforcesaremoreexposedtoGenerativeAIandrelatedLargeLanguageModels(LLMs).FirmswithhigherexposuretothereleaseofChatGPT,asmeasuredbytheexposureoftheirlaborforcetobeingmademoreproductivebytoolslikeChatGPT,outperformfirmswithlowerexposuresbyover40basispointsindailyexcessreturnsduringthetwoweeksfollowingitsrelease.Notably,thesereturndifferencesarenotonlyduetodifferencesinlaborforceexposuresacrossindustries.Returnsoffirmswithhighlaborforceexposuresalsooutperformfirmswithlowexposuresbyabout40basispointsdailyin
1RecentstudiesofGenerativeAIinclude
Eloundou,Manning,Mishkin,andRock
(
2023
)whostudytheimpactofGenerativeAIonindustries’laborforces,
NoyandZhang
(
2023
)whostudythedisplacementeffectsofGenerativeAIonprofessionalwritingtasks,and
Brynjolfsson,Li,andRaymond
(
2023
)whostudytheeffectsofGenerativeAIoncustomersupportagents,and
Felten,Raj,andSeamans
(
2023
)whoconsiderheterogeneityinoccupationalexposure.
2
industry-neutralportfolios.
OurmethodologybuildsontheideathatChatGPTandrelatedtechnologieswillin-creasefirm-levelfreecashflowsthroughalaboreffectthatcanworkthroughtwopotentialchannels.First,firmswhoselaborforcecanbesubstitutedforwithcheaperGenerativeAI-basedcapitalwillexperiencehigherfreecashflowsbyloweringinputcosts.
2
Second,firmswhoselaborinputsaremorecomplementarytoGenerativeAIwillexperiencehighercashflowsduetothetechnologicalimprovementinaninputthatiscomplementarytotheirworkforce.
3
Whilewedonottakeastandonwhether(andforwhichworkers)GenerativeAIisasubstitutefor,oracomplementaryto,labor,weareabletoshowthatfirmsthathaveahighershareofoccupationsexposedtoGenerativeAIexperiencegainsinvalueacrossawidearrayofindustries.Atthesametime,theeffectofthereleaseofChatGPTonfirmvaluesvarieswidelyacrossindustries,aswellaswithinindustriesacrossfirms.Indeed,wefindasignificantlynegativeimpactfromthereleaseofChatGPTforsomeindustries.Value
lossesforincumbentsareconsistentwiththeideathatforsomeindustriesGenerativeAIwillleadtonewentrantsanddisplacementofexistingfirms.WhileadvancesinGenerativeAIcanhaveeffectsthroughtheproductmarketaswellasthroughthelabormarket(forexample,increasingdemandforcloudcomputingservices),ourresultssupporttheideathatAIadvanceswillhaveabroadimpactontheeconomythroughitseffectsonlaborinputs.
ThefactthattheoverallimpactofthearrivalofChatGPTonfirmswithmoreexposuretoGenerativeAIissignificantlypositiveisconsistentwithrecentstudiesshowingthatitisincreasinglymoredifficultfornewentrantstodisplaceincumbentfirms.
4
Wemeasurefirm-levelexposuretoGenerativeAIintwosteps.First,webuildon
Eloun-
douetal.
(
2023
)anduseChatGPTitselftoassesswhethereachofthe19,265taskscur-rentlyperformedbyvariousoccupationscanbedonebythecurrentChatGPTorbyfutureChatGPTafterinvestmentinadditionalcapabilities.Following
Eloundouetal.
(
2023
),weaggregatethetask-levelexposuremeasurestotheoccupationsintheO*NETdatabase.Sec-ond,andnoveltoouranalysis,wemapoccupationstopublicly-tradedfirmsusingdatafromRevelioLabs.ThisdatasetisconstructedfrommillionsofpublicemployeeprofilessuchasLinkedIn.Ourfirm-levelexposuremeasurethuscapturestheabilityofthetaskscurrentlyperformedbylaboratthosefirmstobeperformed(ormademoreefficient)byGenerativeAI.Tothebestofourknowledge,ourstudyisthefirsttocreateafirm-levelmeasureofexposuretoGenerativeAI.
Wenextvalidateourlabor-basedmeasureoffirms’exposuretoGenerativeAIbyexamin-
2See
Autor,Levy,andMurnane
(
2003
)and
Zhang
(
2019
)formeasuresoffirmexposuretoautomationand
Webb
(
2019
)and
LaneandSaint-Martin
(
2021
)fortheimpactofAIonfirms.
3See
Krusell,Ohanian,R´ıos-Rull,andViolante
(
2000
)and
Eisfeldt,Falato,andXiaolan
(
2022
).
4See,forexample,
Guti´errezandPhilippon
(
2019
)and
AkcigitandAtes
(
2020
).
3
ingfirms’earningscalltranscriptsin2023.WedocumentastrongrelationshipbetweenourmeasureofexposuretoGenerativeAIandfirms’discussionsofGenerativeAIandrelatedtechnologiesinfirms’earningscallsfollowingthereleaseofChatGPT.Incontrast,firmswithhigherexposuretoGenerativeAIdonotincreasediscussionscommontechnologicaltopicssuchasEngineeringfollowingthereleaseofChatGPT.Moreover,thesefindingsremainevenafterweexcludeallfirmsfromthemostIT-relatedsectors,
5
suggestingthatfirms’recentdiscussionsaboutGenerativeAIgobeyonditsimpactonrelatedproducts,andextendtotheimpactonoperationsincludinglaborinputs.
WestartbyshowingthetypesofoccupationsthatwillbeaffectedbyadvancesinGen-erativeAI.Wefindthatthemostaffectedoccupationsarethosethatinvolvenon-routinecognitivetasks.Thisisinstarkcontrastwithpriorfindingsthatautomationmainlydis-placesoccupationsinvolvingroutinetasks(
Autoretal.
(
2003
)).Indeed,themostaffectedoccupationsarethosewithahighshareofnon-routinecognitiveanalyticaltasksorroutinecognitivetasks,whilemanualphysicaltasksarerelativelyunaffected.InterpersonaltaskslieinbetweencognitiveandmanualtasksintermsoftheirexposuretoGenerativeAI.Occupa-tionswithhigherwagesalsohavehigherexposuretoGenerativeAI.Ourresultisconsistentwithrecentfindingsby
Kogan,Papanikolaou,Schmidt,andSeegmiller
(
2019
),whofindthattechnologicaladvancesimpactworkersatthehigherendofthewagedistribution.
ExposuretoGenerativeAIthroughfirms’laborinputshasanintuitiverelationshiptoaveragefirmcharacteristicsacrossandwithinindustries.Attheindustrylevel,moreexposedsectorshavehigherwages,consistentwiththosesectorsemployingmoreworkersinhigher-paidoccupationsthatalsotendtobemoreexposedtoGenerativeAI.Regardinglaborinputs,firmsinmoreexposedindustriestendtohavehigherlaborintensityintermsofthenumberofemployeesperunitofcapital,andlowerassettangibility.Moreexposedfirmsalsohavehigherratiosoforganizationaltototalcapital.
6
Forthecharacteristicsrelatedtofirmvaluation,moreexposedsectorshaveloweraveragefirmsizeasmeasuredbytotalassetsandhigherTobin’sQ.Importantly,wealsoobservesimilarrelationshipsbetweenfirms’exposuretoGenerativeAIandfirmcharacteristicswithinindustrysectors.Therobustpatternsofvariationinindustryandfirm-levelexposureswithfirmcharacteristicssupportourstudyofstockreturnsbothacrossandwithinindustries.
FirmswithhigherexposuretoGenerativeAIexperiencehighervolatilityaroundthereleaseofChatGPT.However,itappearsthatittakessometimefortheinformationinChatGPT’sreleasetobeimpoundedintostockprices.Thecumulativeexcessreturnsfor
5Tobeprecise,weexcludetheNAICS51“Information”andNAICS54“Professional,Scientific,andTechnicalServices”sectors.
6See
EisfeldtandPapanikolaou
(
2014
)and
EisfeldtandPapanikolaou
(
2013
).
4
Figure1:GenerativeAIexposurequintileportfolioreturnsovertime:marketfactor-adjusted.Thegraphshowsthecumulativeexcessrealizedreturnsonportfoliosbasedonvalue-weightedsorts.Allportfolioreturnsshownarenetoftherisk-freerate.ThedatasetconsistsofdailystockreturnsfromYahooFinanceforNov.15,2022-March31,2023.Thefigureshowsreturnsadjustedformarketfactorexposure.
thehighest-exposurequintileoffirmsvs.thelowest-exposurequintiledivergeforseveralweeksfollowingthereleaseofChatGPT.Figure
1
plotsthereturnsofthehighest-exposurequintile,thelowest-exposurequintile,andalong-shortportfolio,whichwedenoteAMHfor“ArtificialMinusHuman”.CumulativereturnstoholdingtheAMHportfoliothatislongthehighest-exposurequintile,andshortthelowest-exposurequintilefromthereleaseddatethroughMarch31,2023,areover9%.
WestudytheeffectofGenerativeAIonfirmvaluesbycomparingthereturnsoffirmswithhigherandloweroccupationalexposuretoGenerativeAIduringandoutsidethetwo-weekwindowfollowingthereleaseofChatGPTonNovember30,2022.Theeffectsaresubstantial,andmonotonic,withinindustriesacrossGenerativeAI-exposurequintiles.Adjustingforthemarketfactor,theexcessreturnstoquintileportfoliosformedbasedonfirm-leveloccupa-tionalexposuretoGenerativeAIaremonotonicallyincreasing,withthehighest-exposurequintileoffirmswithinindustriesearningpositiveexcessdailyreturnsofover40basispointswhilethelowestexposurequintileexperiencesnegativeexcessreturnsofaround25basispoints.ThefactthatthesestrongeffectsexistwithinindustriesformanyindustriesprovidesevidencethatGenerativeAIcanhaveabroadimpactonfirmvaluesthroughtheeffectsontheirlaborinputs.
5
Acrossindustries,theeffectsofGenerativeAIonfirmvaluealsovarywidely.Publishing,informationandcomputing-relatedindustrieshavepositivereturnsfollowingthereleaseofChatGPT,whilefinanceandtransportation-relatedindustriesexperiencenegativereturnsoverall.Dispersioninindustryreturnsismuchhigherduringthetwo-weekperiodfollowingthereleaseofChatGPTthanoverthefullsamplefromNovember30,2022toMarch31,2023overall.
Ourwithin-industryresultsalsodisplaystrikingdifferencesacrossindustrysectors.Withinfinance,thereturnofmoreexposedfirmsrelativetolessexposedfirmsissubstantiallyandsignificantlypositive.Combinedwiththeoverallnegativeindustryeffect,thisisconsistentwithsomefirmsbenefittinggreatlyfromGenerativeAIadvanceswhileoveralltheimpactofthereleaseofChatGPTwasnegativeforvalueinthefinanceindustry.FirmswithhigherexposurestoGenerativeAIwithinmanufacturingaswellastheadministrativesupport,wastemanagement,andremediationservicesindustryalsosignificantlyoutperformfirmswithlowerexposures.Ontheotherhand,firmswithhigherexposuresintherealestateandrentalandleasingindustrysignificantlyunderperformfirmswithlowerexposures.ThiscouldmeanthatexistingfirmswithlargeexposurestoGenerativeAImaybedisplacedbynewentrantsinthoseindustries.Finally,severalindustriesdonotdisplaysignificantre-turnspreadsfollowingthereleaseofChatGPT,includingconstructionofbuildings,mining,andheavyandcivilengineeringconstruction.Thenegligibleimpactintheseindustriesisconsistentwithmanualtasks’lowerexposuretoGenerativeAI.
Ourstudycontributestotheliteraturestudyingtheimpactofdisruptivetechnologiesonfirmvaluations.
7
Papanikolaou
(
2011
)and
KoganandPapanikolaou
(
2014
)studytheeffectsofinvestment-specifictechnologicalchangesonassetprices.
EisfeldtandPapanikolaou
(
2013
)and
EisfeldtandPapanikolaou
(
2014
)studyfirms’exposuretotheorganizationcapitaltechnologyfrontier.
Zhang
(
2019
)studiesfirms’exposuretoroutine-biasedautomation.Inaseriesofpapers,
Babina,Fedyk,He,andHodson
(
2020
),
Babina,Fedyk,He,and
Hodson
(
2021
),and
Babina,Fedyk,He,andHodson
(
2022
)studytheeffectsofAIonfirmgrowth,compensation,andworkforcecomposition.Seealso
Webb
(
2019
)fortheimpactofAIonfirms.
Kelly,Papanikolaou,Seru,andTaddy
(
2021
)studyfirms’exposuretodisruptivetechnologicalshocksusingpatenttextualdata,and
Koganetal.
(
2019
)assessesworkerdisplacementfromtechnologicalchangeoveraverylongsample.Thesestudiesofferimportantinsightsintoinvestors’andfirms’responsestotechnologicalshocksinhistoricalsamples.
Ourstudydepartsfromtheseworksbyfocusingonmeasuringfirms’exposuretoGen-
7See
Greenwood,Hercowitz,andKrusell
(
1997
)foranearlycontributiononthelong-runimpactsofinvestment-specifictechnologicalchange.
6
erativeAIandassessinginvestors’reactiontothetechnologyshockuponitsarrival.WearguethatthereleaseofChatGPTinNovemberof2022isanobservable,largetechnologyshock.Wealsohighlightourcontributionofmeasuringinvestors’reactionstothisshockinreal-time.Indeed,theinformationinmarketpricescanpotentiallyinformemployees’andfirms’ultimateresponsestotechnologicaldisruption.Timelyassessmentofthemarket’sexpectationsofGenerativeAI’simpactonfirmscanalsohelppolicymakerstoeffectivelyevaluateregulatorypoliciesinresponsetothearrivalofthenewtechnology.
Whileothercontemporaneousorrecentstudiessuchas
Eloundouetal.
(
2023
)alsoaddresstheexposureofoccupationstoGenerativeAIadvances,ourpaperisnovelinitscontributionstotheeffectonfirms.OuruseoftheRevelioLabsdatatolinkoccupationstofirmsyieldsauniqueopportunitytostudycorporateoutcomes.
8
.
Thepaperproceedsasfollows:Section
I
describesourdataandmeasureoffirms’expo-suretoGenerativeAI.Section
II
providesdescriptivefactsaboutGenerativeAIexposuresacrossoccupations,industries,andfirms.Section
III
documentscorporatecommunicationstoinvestorsregardingGenerativeAI,andtherelationshipbetweenthosecommunicationsandourmeasureofGenerativeAIexposures.Section
IV
presentsourresultsdocumentingthesubstantialchangesinfirmvaluationsfollowingtheintroductionofChatGPT.Finally,Section
V
concludes.
I.DataandMeasurement
Wemeasureafirm’slaborexposuretoGenerativeAIintwosteps.First,wemeasureeachoccupation’sexposuretoGenerativeAIbasedontheoccupation’staskstatementsfromtheO*NETdatabase.Second,weaggregatetheoccupation-levelGenerativeAIexposuremeasuretothefirmlevelusingthefirm-occupationalemploymentdatafromtheRevelioLabsWorkforceDynamicsdatabase.
A.MeasuringoccupationalexposuretoGenerativeAI
OccupationaltaskdataToassesswhetheranoccupationwilllikelyexperienceachangeinabsoluteorrelativeproductivityasaresultofGenerativeAImodelsbecomingwidelyavailableandused,weuseatask-basedapproach.Thatis,similarto
Eloundouetal.
(
2023
),
8Indeed,aswedraftthisstudy,IBM,thecompanyranked#1inourexposuretoGen-erativeAImeasureamongthelargestU.S.firms(seeTable
II
)announcedtohalthir-ingof7,800jobsthatcouldbereplacedbyAI.See
https://www.businessinsider.
com/ibm-halts-hiring-for-7800-jobs-that-could-be-replaced-by-ai-report-2023-5?
utm_source=&utm_medium=newsletter&utm_campaign=
ibm-starts-replacing-jobs-with-ai&r=US&IR=T
7
weconsideranoccupationtobeasetoftasks-to-be-doneandevaluateforeachtaskwhetheritcanbedonemoreproductivelyusingChatGPTandsimilarlargelanguagemodels(LLMs)orfutureapplicationsthatwillbebuiltbasedontheircapabilities.
WeobtaininformationonthetasksinvolvedineachoccupationfromtheO*NETdatabase,whichprovidesalistoftaskstatementscreatedbypractitionersorexperts.
9
Ataskstate-mentisusuallyonesentence,andanoccupationhasonaverage22tasks.The19,265pairsoftaskstatementsandtheoccupationsthattheybelongtothenneedtobecodedasbeingexposedtoGenerativeAItechnologiesornot.
TaskscoringWebuildontheapproachforscoringtasksthatwassuggestedandvalidatedby
Eloundouetal.
(
2023
).Inparticular,weuseGPTitselftoscoreexposureoftasksbasedonwhetherthetaskcanalreadybedonedirectlyusingtheChatGPTinterface,orcanbedonewithadditionaltoolsbuiltontopofit.TwoadvantagesofusinganLLMtoassesstaskstatementsarethatitallowsforbetterreplicabilityoftheresearchintermsofcostandspeedofexecution,andrapidscalingofthemethodtothefullsetof19,265taskstatements.
10
Specifically,weuseOpenAI’sGPT3.5Turbomodeltoclassifythefullsetoftaskstatementsandvalidateitsreliabilityonasmallersubsampleoftasks.
11
ThemodelisgivenanoverallrubricforscoringLLMexposure,aswellastwoexampleinteractionsbetweenauserandanassistantthatshowcasethekindofoutputitisexpectedtoproduce.Then,ataskstatementissubmittedtogetherwithitsO*NETtitle,andthemodelreturnsascore.Thescorescapturewhetherthetimetakentocompletetaskisreducedbyatleasthalf,atconstantquality,iftheworkercanaccessChatGPT-liketools.Thescoresfallintothefollowingcategories:E0indicatesnoexposureasthetooliseitherinsufficientlyusefulforthistask,orcannotbebroughttobearasaresultoftheintrinsicnatureofthetask,e.g.ifitinvolvesphysicalactivities;E1isappliedifa50%reductionincompletiontimeisalreadyfeasiblewiththeexistinglargelanguagemodelinterfaces;E2requiresthatsuchaproductivitygainisfeasible,butonlyoncethecurrentcapabilitiesofthemodelcanbedeployedthroughapplicationswithfurtherinputs(e.g.accesstointernetorproprietarydatabases),orifitistrainedondomain-specificissuesordata;E3isappliedwhentheproductivityincreasewouldrequireimageprocessingcapabilitiesinadditiontocurrenttextprocessing.Importantly,the
9ThisdatacanbeaccessedviatheO*Netdatabaseat/
10Whilesimilarlarge-volumeclassificationtasksinthepastoftenreliedoncrowd-workersononlineplat-formssuchasAmazonMechanicalTurk(MTurk),ChatGPThasrecentlybeenshowntooutperformhumancrowd-workersinaccuracyintextclassificationtasks,whilealsoexhibitinglowervariabilityinscoresacrossmultiplerunsoftheprogram(
Gilardi,Alizadeh,andKubli
,
2023
).Economistshavealsorecentlyusedotherlargelanguagemodelstoclassifyunstructuredtextfromjobpostingsandfoundthattheyoutperformed
othermachinelearningmethods
Hansen,Lambert,Bloom,Davis,Sadun,andTaska
(
2023
).
11ThestructureofthepromptsubmittedtotheOpenAIGPTAPIisshowninAppendix
A
.
8
modelisaskednotonlytorespondwiththescorebu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国冷鲜猪肉行业竞争策略及发展潜力研究报告
- 2024-2030年中国冶金选矿用产业未来发展趋势及投资策略分析报告
- 2024-2030年中国冰洲石行业产量预测及未来发展战略规划研究报告
- 2024-2030年中国内衬消防水带项目可行性研究报告
- 2021年幼儿园4月份计划
- 10岁生日宴会致辞
- 2024年广告发布合同详细条款
- 2024年广告公司创作合同
- 2023年石家庄井陉县招聘社区工作者考试真题
- 2023年柳州市雀儿山路第二小学招聘考试真题
- 试议两校区教学管理面临的问题及对策
- 用叔碳酸乙烯酯改性地丙烯酸乳液聚合物
- 可自动多级标题编号的报告word模板
- 硅太阳能电池的丝网印刷技术
- 一年级等量代换
- 音乐教师述职报告
- 三角形、梯形等图形的画高训练及计算练习(共3页)
- LS风险矩阵评价准则(3页)
- XXX铁路局职工教育培训管理制度
- 六氟化硫气体泄漏检测技术
- 低压配电设计规范
评论
0/150
提交评论