2022-2023学年上海市徐汇区上海中学高三下学期三校联考数学试题_第1页
2022-2023学年上海市徐汇区上海中学高三下学期三校联考数学试题_第2页
2022-2023学年上海市徐汇区上海中学高三下学期三校联考数学试题_第3页
2022-2023学年上海市徐汇区上海中学高三下学期三校联考数学试题_第4页
2022-2023学年上海市徐汇区上海中学高三下学期三校联考数学试题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年上海市徐汇区上海中学高三下学期三校联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给出个数,,,,,,其规律是:第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能()A.; B.;C.; D.;2.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()A. B. C. D.3.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B.16 C. D.4.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)5.已知集合,则元素个数为()A.1 B.2 C.3 D.46.已知函数满足,设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为()A. B.C. D.8.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.49.已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有()①绕着轴上一点旋转;②沿轴正方向平移;③以轴为轴作轴对称;④以轴的某一条垂线为轴作轴对称.A.①③ B.③④ C.②③ D.②④10.下列命题为真命题的个数是()(其中,为无理数)①;②;③.A.0 B.1 C.2 D.311.函数的对称轴不可能为()A. B. C. D.12.已知i为虚数单位,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设等比数列的前项和为,若,则数列的公比是.14.执行如图所示的程序框图,则输出的结果是______.15.已知函数,若的最小值为,则实数的取值范围是_________16.中,角的对边分别为,且成等差数列,若,,则的面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.(Ⅰ)若,求曲线的方程;(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求面积的最大值.18.(12分)在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.19.(12分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:.20.(12分)对于正整数,如果个整数满足,且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.(Ⅰ)写出整数4的所有“正整数分拆”;(Ⅱ)对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;(Ⅲ)对所有的正整数,证明:;并求出使得等号成立的的值.(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)21.(12分)一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分.(1)设抛掷4次的得分为,求变量的分布列和数学期望.(2)当游戏得分为时,游戏停止,记得分的概率和为.①求;②当时,记,证明:数列为常数列,数列为等比数列.22.(10分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.2、C【解析】

求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,,令,解得,,故当时,,当,,且,故方程在上有两个不同的实数根,故,解得.故选:C.【点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.3、C【解析】

根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【详解】由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【点睛】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.4、B【解析】

根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【详解】由f(x+2)=f(x),得f(x)是周期函数且周期为2,先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,,所以,选项A错误;选项B,因为,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确;选项C,,所以,即,选项C错误;选项D,,选项D错误.故选:B.【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.5、B【解析】

作出两集合所表示的点的图象,可得选项.【详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,故选:B.【点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.6、B【解析】

结合函数的对应性,利用充分条件和必要条件的定义进行判断即可.【详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题.7、C【解析】

根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【详解】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.8、D【解析】

利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题9、D【解析】

计算得到,,故函数是周期函数,轴对称图形,故②④正确,根据图像知①③错误,得到答案.【详解】,,,当沿轴正方向平移个单位时,重合,故②正确;,,故,函数关于对称,故④正确;根据图像知:①③不正确;故选:.【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.10、C【解析】

对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于③中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.【详解】由题意,对于①中,由,可得,根据不等式的性质,可得成立,所以是正确的;对于②中,设函数,则,所以函数为单调递增函数,因为,则又由,所以,即,所以②不正确;对于③中,设函数,则,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得最大值,最大值为,所以,即,即,所以是正确的.故选:C.【点睛】本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.11、D【解析】

由条件利用余弦函数的图象的对称性,得出结论.【详解】对于函数,令,解得,当时,函数的对称轴为,,.故选:D.【点睛】本题主要考查余弦函数的图象的对称性,属于基础题.12、A【解析】

根据复数乘除运算法则,即可求解.【详解】.故选:A.【点睛】本题考查复数代数运算,属于基础题题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】

当q=1时,.当时,,所以.14、1【解析】

该程序的功能为利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得:,,不满足条件,执行循环体,,,不满足条件,执行循环体,,,不满足条件,执行循环体,,,不满足条件,执行循环体,,,此时满足条件,退出循环,输出的值为1.故答案为:1.【点睛】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.15、【解析】

,可得在时,最小值为,时,要使得最小值为,则对称轴在1的右边,且,求解出即满足最小值为.【详解】当,,当且仅当时,等号成立.当时,为二次函数,要想在处取最小,则对称轴要满足并且,即,解得.【点睛】本题考查分段函数的最值问题,对每段函数先进行分类讨论,找到每段的最小值,然后再对两段函数的最小值进行比较,得到结果,题目较综合,属于中档题.16、.【解析】

由A,B,C成等差数列得出B=60°,利用正弦定理得进而得代入三角形的面积公式即可得出.【详解】∵A,B,C成等差数列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案为:【点睛】本题考查了等差数列的性质,三角形的面积公式,考查正弦定理的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)和.;(Ⅱ)证明见解析;(Ⅲ).【解析】

(Ⅰ)由,可得,解出即可;(Ⅱ)设点,设直线,与椭圆方程联立可得:,利用,根与系数的关系、中点坐标公式,证明即可;(Ⅲ)由(Ⅰ)知,曲线,且,设直线的方程为:,与椭圆方程联立可得:,利用根与系数的关系、弦长公式、三角形的面釈计算公式、基本不等式的性质,即可求解.【详解】(Ⅰ)由题意:,,解得,则曲线的方程为:和.(Ⅱ)证明:由题意曲线的渐近线为:,设直线,则联立,得,,解得:,又由数形结合知.设点,则,,,,,即点在直线上.(Ⅲ)由(Ⅰ)知,曲线,点,设直线的方程为:,联立,得:,,设,,,,面积,令,,当且仅当,即时等号成立,所以面积的最大值为.【点睛】本题考查了椭圆与双曲线的标准方程及其性质、直线与椭圆的相交问题、弦长公式、三角形的面积计算公式、基本不等式的性质,考查了推理论证能力与运算求解能力,属于难题.18、(1)曲线,曲线.(2).【解析】

(1)用和消去参数即得的极坐标方程;将两边同时乘以,然后由解得直角坐标方程.(2)过极点的直线的参数方程为,代入到和:中,表示出即可求解.【详解】解:由和,得,化简得故:将两边同时乘以,得因为,所以得的直角坐标方程.(2)设直线的极坐标方程由,得,由,得故当时,取得最大值此时直线的极坐标方程为:,其直角坐标方程为:.【点睛】考查直角坐标方程、极坐标方程、参数方程的互相转化以及应用圆的极坐标方程中的几何意义求距离的的最大值方法;中档题.19、(1)见解析;(2)见解析【解析】

(1)对函数求导,对参数讨论,得函数单调区间,进而求出极值;(2)是方程的两根,代入方程,化简换元,构造新函数利用函数单调性求最值可解.【详解】(1)依题意,;若,则,则函数在上单调递增,此时函数既无极大值,也无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;(2)依题意,,则,,故,;要证:,即证,即证:,即证,设,只需证:,设,则,故在上单调递增,故,即,故.【点睛】本题考查函数极值及利用导数证明二元不等式.证明二元不等式常用方法是转化为证明一元不等式,再转化为函数最值问题.利用导数证明不等式的基本方法:(1)若与的最值易求出,可直接转化为证明;(2)若与的最值不易求出,可构造函数,然后根据函数的单调性或最值,证明.20、(Ⅰ),,,,;(Ⅱ)为偶数时,,为奇数时,;(Ⅲ)证明见解析,,【解析】

(Ⅰ)根据题意直接写出答案.(Ⅱ)讨论当为偶数时,最大为,当为奇数时,最大为,得到答案.(Ⅲ)讨论当为奇数时,,至少存在一个全为1的拆分,故,当为偶数时,根据对应关系得到,再计算,,得到答案.【详解】(Ⅰ)整数4的所有“正整数分拆”为:,,,,.(Ⅱ)当为偶数时,时,最大为;当为奇数时,时,最大为;综上所述:为偶数,最大为,为奇数时,最大为.(Ⅲ)当为奇数时,,至少存在一个全为1的拆分,故;当为偶数时,设是每个数均为偶数的“正整数分拆”,则它至少对应了和的均为奇数的“正整数分拆”,故.综上所述:.当时,偶数“正整数分拆”为,奇数“正整数分拆”为,;当时,偶数“正整数分拆”为,,奇数“正整数分拆”为,故;当时,对于偶数“正整数分拆”,除了各项不全为的奇数拆分外,至少多出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论