版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于两条直线的交点坐标课件第1页,课件共13页,创作于2023年2月1.两条直线的交点坐标思考:几何元素及关系代数表示点A在直线l上直线l1与l2的交点是AA(a,b)l:Ax+By+C=0点A直线lAa+Bb+C=0点A的坐标是方程组的解结论1:求两直线交点坐标方法-------联立方程组第2页,课件共13页,创作于2023年2月2.二元一次方程组的解与两条直线的位置关系ïîïíìÛïîïíì平行重合相交无解无穷多解唯一解212121,,,llllll第3页,课件共13页,创作于2023年2月例1:求下列两条直线的交点:l1:3x+4y-2=0;l2:2x+y+2=0.例2:求经过原点且经过以下两条直线的交点的直线方程:l1:x-2y+2=0,l2:2x-y-2=0.解:解方程组3x+4y-2=02x+y+2=0∴l1与l2的交点是M(-2,2)解:解方程组x-2y+2=02x-y-2=0∴l1与l2的交点是(2,2)设经过原点的直线方程为y=kx把(2,2)代入方程,得k=1,所求方程为x-y=0x=-2y=2得x=2y=2得xyM-220l1l2第4页,课件共13页,创作于2023年2月
练习1:下列各对直线是否相交,如果相交,求出交点的坐标,否则试着说明两线的位置关系:(1)l1:x-y=0,l2:x+3y-10=0;(2)l1:3x-y+4=0,l2:6x-2y-1=0;(3)l1:3x+4y-5=0,l2:6x+8y-10=0;解:(1)x=5/2,y=5/2,两直线有交点(5/2,5/2)
(2)方程组无解,两直线无交点。l1‖l2
(3)两方程可化成同一个方程,两直线有无数个交点。l1与l2重合第5页,课件共13页,创作于2023年2月例3:直线试讨论:(1)的条件是什么?
(2)的条件是什么?第6页,课件共13页,创作于2023年2月已知两直线
l1:x+my+6=0,l2:(m-2)x+3y+2m=0,问当m为何值时,直线l1与l2:
(1)相交,(2)平行,(3)垂直练习第7页,课件共13页,创作于2023年2月探究:=0时,方程为3x+4y-2=0xy=1时,方程为5x+5y=0l2=-1时,方程为x+3y-4=00l1l3上式可化为:(3+2λ)x+(4+λ)y+2λ-2=0发现:此方程表示经过直线3x+4y-2=0与直线2x+y+2=0交点的直线束(直线集合)第8页,课件共13页,创作于2023年2月A1x+B1y+C1+λ(A2x+B2y+C2)=0是过直线A1x+B1y+C1=0和A2x+B2y+C2=0的交点的直线系方程。3.共点直线系方程:回顾例2:求经过原点且经过以下两条直线的交点的直线方程:l1:x-2y+2=0,l2:2x-y-2=0.解:设直线方程为x-2y+2+λ(2x-y-2)=0,因为直线过原点(0,0),将其代入上式可得:λ=1将λ=1代入x-2y+2+λ(2x-y-2)=0得:3x-3y=0即x-y=0为所求直线方程。第9页,课件共13页,创作于2023年2月练习2:求经过两条直线x+2y-1=0和2x-y-7=0的交点,且垂直于直线x+3y-5=0的直线方程。解法一:解方程组x+2y-1=0,2x-y-7=0得x=3y=-1∴这两条直线的交点坐标为(3,-1)又∵直线x+2y-5=0的斜率是-1/3∴所求直线的斜率是3所求直线方程为y+1=3(x-3)即3x-y-10=0解法二:所求直线在直线系2x-y-7+λ(x+2y-1)=0中经整理,可得(2+λ)x+(2λ-1)y-λ-7=0∴-————=32+λ2λ-1解得λ=1/7因此,所求直线方程为3x-y-10=0第10页,课件共13页,创作于2023年2月4.能力提升:①两条直线x+my+12=0和2x+3y+m=0的交点在y轴上,则m
的值是(A)0(B)-24(C)±6(D)以上都不对②若直线x-y+1=0和x-ky=0相交,且交点在第二象限,则k的取值范围是(A)(-∞,0)(B)(0,1]
(C)(0,1)(D)(1,+∞)③两直线x-y-1=0,3x+y-2=0与y轴所围成的三角形的面积为(A)9/4(B)9/8(C)3/4(D)3/8④已知不论m取何实数值,直线(m-1)x-y+2m+1=0恒过一定点,则这点的坐标为(A)m≠0(B)m≠-3/2
(C)m≠1(D)m≠0,m≠-3/2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度赞助合同2篇
- 2024年度市场调查与咨询服务合同2篇
- 2024学校活动场地租赁协议
- 上海市奉贤区2024-2025学年八年级上学期期中英语试题(解析版)
- 2024合伙开店合同
- 江南大学《发酵工程原理与技术》2023-2024学年第一学期期末试卷
- 佳木斯大学《运动生理学》2021-2022学年第一学期期末试卷
- 2024年企业环境保护与污染治理合同
- 2024年债务担保协议标准范本版B版
- 暨南大学《自然辩证法概论》2021-2022学年第一学期期末试卷
- 厌氧罐大修方案
- GB∕T 37246-2018 精细陶瓷抗热震性能试验方法
- 复习步兵班进攻战斗示教作业教案
- 船舶结构与设备 船舶常识
- 阿里铁军管理三板斧课件
- 安全生产与环境意识
- 全面详细解读《中华人民共和国教育法》PPT课件
- 《中国人民站起来了》教学反思
- Q∕GDW 11442-2020 通信电源技术、验收及运行维护规程
- 支气管镜下冷冻肺活检术的护理配合
- 220种食物的血糖生成指数(GI)表
评论
0/150
提交评论