2021年海南省三亚市普通高校对口单招数学摸底卷(含答案)_第1页
2021年海南省三亚市普通高校对口单招数学摸底卷(含答案)_第2页
2021年海南省三亚市普通高校对口单招数学摸底卷(含答案)_第3页
2021年海南省三亚市普通高校对口单招数学摸底卷(含答案)_第4页
2021年海南省三亚市普通高校对口单招数学摸底卷(含答案)_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年海南省三亚市普通高校对口单招数学摸底卷(含答案)班级:________姓名:________考号:________

一、单选题(20题)1.直线x+y+1=0的倾斜角为()A.

B.

C.

D.-1

2.设m>n>1且0<a<1,则下列不等式成立的是()A.am<an

B.an<am

C.a-m<a-n

D.ma<na

3.A.B.C.D.

4.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/3

5.已知两直线y=ax-2和3x-(a+2)y+l=0互相平.行,则a等于()A.1或-3B.-1或3C.1和3D.-1或-3

6.如图所示的程序框图中,输出的a的值是()A.2B.1/2C.-1/2D.-1

7.己知tanα,tanβ是方程2x2+x-6=0的两个根,则tan(α+β)的值为()A.-1/2B.-3C.-1D.-1/8

8.设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6B.5C.4D.3

9.“a=0”是“a2+b2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

10.A.1B.2C.3D.4

11.若集合M={3,1,a-1},N={-2,a2},N为M的真子集,则a的值是()A.-1

B.1

C.0

D.

12.过点A(-1,0),B(0,-1)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0

13.已知一元二次不等式ax2+bx+1>0的解是<x<,那么()A.

B.

C.

D.

14.下列双曲线中,渐近线方程为y=±2x的是()A.x2-y2/4=1

B.x2/4-y2=1

C.x2-y2/2=1

D.x2/2-y2=1

15.函数y=的定义域是()A.(-2,2)B.[-2,2)C.(-2,2]D.[-2,2]

16.如图所示,一个空间几何体的正视图和侧视图都是全等的等腰三角形,俯视图是一个圆,那么这个几何体是()A.正方体B.圆锥C.圆柱D.半球

17.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2

B.2

C.

D.

18.在ABC中,C=45°,则(1-tanA)(1-tanB)=()A.1B.-1C.2D.-2

19.A.-1B.-4C.4D.2

20.在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°

二、填空题(10题)21.若长方体的长、宽、高分别为1,2,3,则其对角线长为

22.

23.

24.有一长为16m的篱笆要围成一个矩形场地,则矩形场地的最大面积是________m2.

25.

26.5个人站在一其照相,甲、乙两人间恰好有一个人的排法有_____种.

27.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.

28.函数的定义域是_____.

29.

30.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.

三、计算题(10题)31.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

32.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

33.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

34.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

35.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

36.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

37.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

38.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

39.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

40.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

四、简答题(10题)41.化简

42.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.

43.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

44.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

45.求证

46.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。

47.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

48.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

49.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.

50.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。

五、解答题(10题)51.

52.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

53.解不等式4<|1-3x|<7

54.已知函数(1)求f(x)的最小正周期及其最大值;(2)求f(x)的单调递增区间.

55.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.

56.

57.已知数列{an}是公差不为0的等差数列a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn=2/n(an+2),求数列{bn}的前n项和Sn.

58.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1时有极值0.(1)求常数a,b的值;(2)求f(x)的单调区间.

59.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,其中左焦点F(-2,0).(1)求椭圆C的方程;(2)若直线:y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆:x2+y2=l上,求m的值.

60.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1

六、证明题(2题)61.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

62.己知sin(θ+α)=sin(θ+β),求证:

参考答案

1.C由直线方程可知其斜率k=-1,则倾斜角正切值为tanα=-1,所以倾斜角为3π/4。

2.A由题可知,四个选项中只有选项A正确。

3.C

4.D古典概型的概率.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有4种:1,2;1,4;2,3;3,4;,则所求的概率为4/6=2/3

5.A两直线平行的性质.由题意知两条直线的斜率均存在,因为两直线互相.平

6.D程序框图的运算.执行如下,a=2,2>0,a=1/2,1/2>0,a=-l,-1<0,退出循环,输出-1。

7.D

8.B集合的运算.∵A={x|1≤x≤5},Z为整数集,则A∩Z={1,2,3,4,5}.

9.B命题的判定.若a2+b2=0,则a=b=0;若a=0,则a2+b2不一定等于0.

10.B

11.A

12.C直线的两点式方程.点代入验证方程.

13.B由一元二次方程得求根公式可知,x1x2=-b/2a/=-1/3,所以b/a=-1/6.

14.A双曲线的渐近线方程.由双曲线渐近线方程的求法知,双曲线x2-y2/4=1的渐近线方程为y=±2x

15.C自变量x能取到2,但是不能取-2,因此答案为C。

16.B空间几何体的三视图.由正视图可排除选项A,C,D,

17.D

18.C

19.C

20.C

21.

22.

23.{-1,0,1,2}

24.16.将实际问题求最值的问题转化为二次函数在某个区间上的最值问题.设矩形的长为xm,则宽为:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.

25.π

26.36,

27.5或,

28.{x|1<x<5且x≠2},

29.-2/3

30.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.

31.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

32.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

33.

34.

35.

36.

37.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

38.

39.

40.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

41.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

42.

43.

44.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。

(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,

45.

46.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离

47.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

48.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

49.∵(1)这条弦与抛物线两交点

50.

51.

52.

53.

54.

的单调递增区间为[-π/12+kπ,5π/12+kπ]

55.(1)由题意,设圆心坐标为(a,a),则(a,-1)2+(a-6)2=(a-4)2+(a-5)2=25,a=1;所以圆C的方程(x-1)2+(y-1)2=25.

56.

57.(1)设数列{an}的公差为d,由a1=2和a2,a3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论