




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A. B.C. D.2.如果,那么()A.a≥﹣2 B.﹣2≤a≤3C.a≥3 D.a为一切实数3.下列式子中,属于最简二次根式的是()A. B. C. D.4.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是()A.x≥2 B.x≤2 C.x≥4 D.x≤45.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为()A. B.2 C. D.36.计算×的结果是()A. B.8 C.4 D.±47.在平面直角坐标系中,点A的坐标是(3,-4),点B的坐标是(1,2),将线段AB平移后得到线段A'B'.若点A对应点A'的坐标是(5,2),则点B'的坐标是()A.(3,6) B.(3,7) C.(3,8) D.(6,4)8.如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为()A.4米 B.4米 C.8米 D.8米9.(3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2 B. C.5 D.10.一个正多边形的内角和为,则这个正多边形的每一个外角的度数是()A. B. C. D.二、填空题(每小题3分,共24分)11.分式,,的最简的分母是_____.12.如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.13.在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在x轴上,且AC+BC=6,写出满足条件的所有点C的坐标_____.14.已知四边形ABCD为菱形,其边长为6,,点P在菱形的边AD、CD及对角线AC上运动,当时,则DP的长为________.15.使分式x2-1x+1的值为0,这时16.若,则m-n的值为_____.17.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边的C′处,并且C′D∥BC,则CD的长是________.18.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是_____分.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,∠CAB=60°,BD=2,求CD的长.20.(6分)化简:(1);(2).21.(6分)如图,直线y=x+1与x,y轴交于点A,B,直线y=-2x+4与x,y轴交于点D,C,这两条直线交于点E.(1)求E点坐标;(2)若P为直线CD上一点,当△ADP的面积为9时,求P的坐标.22.(8分)已知直线的图象经过点和点(1)求的值;(2)求关于的方程的解(3)若、为直线上两点,且,试比较、的大小23.(8分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.24.(8分)学生小明、小华为了解本校八年级学生每周上网的时间,各自进行了抽样调查.小明调查了八年级信息技术兴趣小组中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5h;小华从全体320名八年级学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2h.小明与小华整理各自样本数据,如表所示.时间段(h/周)小明抽样人数小华抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?_____.估计该校全体八年级学生平均每周上网时间为_____h;(2)在具有代表性的样本中,中位数所在的时间段是_____h/周;(3)专家建议每周上网2h以上(含2h)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体八年级学生中有多少名学生应适当减少上网的时间?25.(10分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=cm;(2)当t为多少时,四边形PQCD成为平行四边形?(3)当t为多少时,四边形PQCD为等腰梯形?(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.26.(10分)如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB(1)求证:四边形EFCD是菱形;(2)设CD=2,求D、F两点间的距离.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.2、C【解析】
直接利用二次根式有意义的条件得出关于不等式组,解不等式组进而得到的取值范围.【详解】解:∵∴解得:故选:C【点睛】本题考查了二次根式有意义的条件以及解不等式组等知识点,能根据已知条件得到关于的不等式组是解题的关键.3、B【解析】
根据最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式,可得答案.【详解】解:A、被开方数含能开得尽方的因数或因式,故A错误;;
B、被开方数5中不含开的尽方的因数,是最简二次根式,故B正确;
C、被开方数8=2×含能开得尽方的因数或因式,故C错误;D、被开方数中含有分母,不是最简二次根式,故D错误;
故选:B.【点睛】本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式.4、B【解析】
解不等式ax+b≥0的解集,就是求一次函数y=ax+b的函数值大于或等于0时,自变量的取值范围.【详解】不等式ax+b≥0的解集为x≤1.
故选B.【点睛】本题考查的知识点是利用图象求解各问题,解题关键是先画函数图象,根据图象观察,得出结论.5、C【解析】
延长BC到E使BE=AD,利用中点的性质得到CM=DE=AB,再利用勾股定理进行计算即可解答.【详解】解:延长BC到E使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故选:C.【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.6、C【解析】
根据二次根式乘法法则进行计算即可.【详解】原式===4,故选C.【点睛】本题考查了二次根式的乘法,正确把握二次根式乘法的运算法则是解题的关键.7、C【解析】
先由点A的平移结果判断出平移的方式,再根据平移的方式求出点B′的坐标即可.【详解】由点A(3,-4)对应点A′(5,2),知点A向右平移了2个单位,再向上平移了6个单位,所以,点B也是向右平移了2个单位,再向上平移了6个单位,B(1,2)平移后,变成:B′(3,8),故选C.【点睛】本题考查了平面直角坐标系中图形的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.8、D【解析】分析:由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,将问题转化为求OA;根据∠BAD=60°得到△ABD为等边三角形,即可求出OB的长,再利用勾股定理求出OA即可求解.详解:设AC与BD交于点O.∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=32÷4=8米.∵∠BAD=60°,AB=AD,∴△ABD为等边三角形,∴BD=AB=8米,∴OD=OB=4米.在Rt△AOB中,根据勾股定理得:OA=4(米),∴AC=2OA=8米.故选D.点睛:本题主要考查的是勾股定理,菱形的性质以及等边三角形的判定与性质,熟练掌握菱形的性质是解题的关键.9、B【解析】
根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.10、A【解析】
根据多边形的内角和公式求出边数,从而求得每一个外角的度数.【详解】多边形的内角和为,即解得:∴该多边形为正八边形∴正八边形的每一个外角为:故选:A【点睛】本题考查了多边形的内角和与外角和公式,解题的关键在于根据内角和求出具体的边数.二、填空题(每小题3分,共24分)11、6x【解析】
先确定各分母中,系数的最小公倍数,再找出各因式的最高次幂,即可得答案.【详解】∵3个分式分母的系数分别为1,2,3∴此系数最小公倍数是6.∵x的最高次幂均为1,∴三个分式的最简公分母为6x.故答案为:6x【点睛】本题考查分式最简公分母的定义:最简公分母就是由每个分母中系数的最小公倍数与各因式的最高次幂的积.12、2【解析】
由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF1.设AB=x,则AF=x,AC=x+1,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+1)2,解方程即可得出AB的长,由矩形的性质即可得出结论.【详解】由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF1.设AB=x,则AF=x,AC=x+1.∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+1)2,解得:x=2,∴AB=2.∵ABCD是矩形,∴CD=AB=2.故答案为:2.【点睛】本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.13、(3,0)或(﹣3,0)【解析】试题解析:设点C到原点O的距离为a,∵AC+BC=6,∴a-+a+=6,解得a=3,∴点C的坐标为(3,0)或(-3,0).14、2或或【解析】
分以下三种情况求解:(1)点P在CD上,如图①,根据菱形的边长以及CP1=2DP1可得出结果;(2)点P在对角线AC上,如图②,在三角形CDP2中,可得出∠P2DC=90°,进而可得出DP2的长;(3)当点P在边AD上,如图③,过点D作于点F,过点作于点E,设,则,再用含x的代数式表示出CE,EP3,CP3的长,根据勾股定理列方程求解即可.【详解】解:(1)当点P在CD上时,如解图①,,,;(2)当点P在对角线AC上时,如解图②,,.当时,,;图①图②(3)当点P在边AD上时,如解图③,过点D作于点F,过点作于点E,设,则,,,,,,,.,在中,由勾股定理得,解得,(舍).综上所述,DP的长为2或或.故答案为:2或或.【点睛】本题主要考查菱形的性质,含30°直角三角形的性质以及勾股定理,在解答无图题时注意分类讨论,避免漏解.
错因分析较难题.出错原因:①不能全面考虑所有情况,即根据动点在每一条边上进行分类讨论求解;②在第三种情况下不能将已知条件有效利用,转化到一个三角形中通过勾股定理列方程求解.
15、1【解析】试题分析:根据题意可知这是分式方程,x2答案为1.考点:分式方程的解法16、4【解析】
根据二次根式与平方的非负性即可求解.【详解】依题意得m-3=0,n+1=0,解得m=3,n=-1,∴m-n=4【点睛】此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.17、【解析】
解:设CD=x,根据C′D∥BC,且有C′D=EC,可得四边形C′DCE是菱形;即Rt△BC′E中,AC==10,EB=x;故可得BC=x+x=8;解得x=.18、1【解析】
先根据平均数公式分别求出全班38名学生的总分,去掉A、B、C、D、E五人的总分,相减得到A、B、C、D、E五人的总分,再根据实际情况得到C的成绩.【详解】解:设A、B、C、D、E分别得分为a、b、c、d、e.则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,因此a+b+c+d+e=500分.由于最高满分为1分,因此a=b=c=d=e=1,即C得1分.故答案是:1.【点睛】利用了平均数的概念建立方程.注意将A、B、C、D、E五人的总分看作一个整体求解.三、解答题(共66分)19、1【解析】
根据角平分线的定义得到∠CAD=∠CAB=30°,根据三角形的内角和得到∠B=30°,根据直角三角形的性质即可得到结论.【详解】∵AD是∠BAC的平分线,∠CAB=60°,∴∠CAD=∠CAB=30°,∵∠C=90°,∠CAB=60°,∴∠B=30°,∴AD=BD=2,∵∠CAD=30°,∴CD=12AD=1【点睛】本题考查了解直角三角形,锐角三角函数,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1);(2).【解析】
(1)根据分式的乘除、分式的加减运算法则,以及先算乘除再算加减的运算顺序,即可化简;(2)根据分式的乘除、分式的加减运算法则,以及先算乘除再算加减的运算顺序,即可化简.【详解】解:(1)原式=;(2)原式=.故答案为(1);(2).【点睛】本题考查分式,难度一般,是中考的重要考点,熟练掌握分式的运算法则是顺利解题的关键.21、(1)点E的坐标为(1,2);(2)点P的坐标为(-1,6)或(5,-6).【解析】
(1)把y=x+1与y=-2x+4联立组成方程组,解方程组求得x、y的值,即可求得点E的坐标;(2)先求得点A的坐标为(-1,0)、点D的坐标为(2,0),可得AD=3,根据△ADP的面积为9求得△ADP边AD上的高为6,可得点P的纵坐标为6,再分当点P在y轴的上方时和当点P在y轴的下方时两种情况求点P的坐标即可.【详解】(1)由题意得,,解得,,∴点E的坐标为(1,2);(2)∵直线y=x+1与x交于点A,直线y=-2x+4与x交于点D,∴A(-1,0),D(2,0),∴AD=3,∵△ADP的面积为9,∴△ADP边AD上的高为6,∴点P的纵坐标为6,当点P在y轴的上方时,-2x+4=6,解得x=-1,∴P(-1,6);当点P在y轴的下方时,-2x+4=-6,解得x=5,∴P(5,-6);综上,当△ADP的面积为9时,点P的坐标为(-1,6)或(5,-6).【点睛】本题考查了两直线的交点问题,熟知两条直线的交点坐标是这两条直线相对应的一次函数表达式所组成的二元一次方程组的解是解决问题的关键.22、(1)b=1;(2);(3).【解析】
(1)将直线经过的两点代入原直线,联立二元一次方程组即可求得b值;(2)求出k值,解一元一次方程即可;(3)根据k的大小判断直线是y随x的增大而增大的,由此可知、的大小.【详解】解:(1)将(2,4),(-2,-2)代入直线得到:,解得:,∴b=1;(2)已知,b=1,令,解得,∴关于的方程的解是;(3)由于>0,可知直线是y随x的增大而增大的,∵,∴<.【点睛】本题考查一次函数表达式,增减性,解题时要注意理解一次函数与方程的关系.23、(1)手机支付金额y(元)与骑行时间x(时)的函数关系式是y=;(2)当x=2时,李老师选择两种支付方式一样;当x>2时,会员卡支付比较合算;当0<x<2时,李老师选择手机支付比较合算.【解析】试题分析:(1)由图可知,“手机支付”的函数图象过点(0.5,0)和点(1,0.5),由此即可由“待定系数法”求得对应的函数解析式;(2)先用“待定系数法”求得“会员支付”的函数解析式,结合(1)中所得函数解析式组成方程组,即可求得两个函数图象的交点坐标,由交点坐标结合图象即可得到本题答案;试题解析:(1)由题意和图象可设:手机支付金额y(元)与骑行时间x(时)的函数解析式为:,由图可得:,解得:,∴手机支付金额y(元)与骑行时间x(时)的函数解析式为:;(2)由题意和图象可设会员支付y(元)与骑行时间x(时)的函数解析式为:,由图可得:,由可得:,∴图中两函数图象的交点坐标为(2,1.5),又∵,∴结合图象可得:当时,李老师用“手机支付”更合算;当时,李老师选择两种支付分式花费一样多;当时,李老师选择“会员支付”更合算.点睛:本题是一道一次函数的实际问题,解题时有两个要点:(1)由图中所得信息,求出两个函数的解析式;(2)由两函数的解析式组成方程组求得两函数图象的交点坐标,结合两函数图象的位置关系即可得到第2问的答案.24、小华1.20~1【解析】试题分析:(1)小明抽取的样本太片面,信息技术兴趣小组的学生上网时间相对较多,所以不具代表性,而小华抽取的样本是随机抽取具有代表性,所以估计该校全体八年级学生平均每周上网时间为1.2小时;
(2)根据中位数的概念找出第20和第21名同学所在的上网时间段即可;
(3)先求出随机调查的40名学生中应当减少上网时间的学生的频率,再乘以320求出学生人数即可.试题解析:(1)小明抽取的样本太片面,信息技术兴趣小组的学生上网时间相对较多,所以不具代表性,而小华抽取的样本是随机抽取具有代表性.故答案为小华;1.2.(2)由图表可知第20和第21名同学所在的上网时间段为:0∼1h/周,所以中位数为:0∼1h/周.故答案为0∼1.(3)随机调查的40名学生中应当减少上网时间的学生的频率为:故该校全体八年级学生中应当减少上网时间的人数为:320×0.2=64(人).答:该校全体八年级学生中应当减少上网时间的人数为64人.25、(1)18cm(2)当t=125秒时四边形PQCD为平行四边形(3)当t=245时,四边形PQCD为等腰梯形(4)存在t,t的值为103【解析】试题分析:(1)作DE⊥BC于E,则四边形ABED为矩形.在直角△CDE中,已知DC、DE的长,根据勾股定理可以计算EC的长度,根据BC=BE+EC即可求出BC的长度;(2)由于PD∥QC,所以当PD=QC时,四边形PQCD为平行四边形,根据PD=QC列出关于t的方程,解方程即可;(3)首先过D作DE⊥BC于E,可求得EC的长,又由当PQ=CD时,四边形PQCD为等腰梯形,可求得当QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12时,四边形PQCD为等腰梯形,解此方程即可求得答案;(4)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.试题解析:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025物流服务合同协议书样本
- 2025排水系统修复工程合同
- 2025签订汽车租赁合同的注意事项
- 2025汽车维修服务合同模板
- 2025年度资产转让合同样本
- 2025简易装修房屋租赁合同
- 2024年膨化硝铵炸药项目项目投资申请报告代可行性研究报告
- 2025商业大厦办公室租赁合同模板
- 2025塑胶制品购销合同书样本
- 2025物业营销中心装修合同
- 第18课《井冈翠竹》课件-2024-2025学年统编版语文七年级下册
- 公立医院成本核算指导手册
- 第16课《有为有不为》公开课一等奖创新教学设计
- 小米创业思考(商业思考)
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- 年产10吨功能益生菌冻干粉的工厂设计改
- 发电厂电气一次部分设计—2×300+2×200MW
- 基于深度学习的鸟类识别系统的设计与实现
- 实验室安全-电水气火的使用安全课件
- 【走向高考】(2013春季出版)高考物理总复习 模块整合课件 新人教版选修3-5
- 公路建设项目河大桥开工报告
评论
0/150
提交评论