版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有一个数用科学记数法表示为5.2×105,则这个数是()A.520000 B. C.52000 D.52000002.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a= B.a=2b C.a=b D.a=3b3.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=04.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查5.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E6.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为()A. B.2 C. D.37.下列二次根式中,是最简二次根式的是()A. B. C. D.8.计算36÷(﹣6)的结果等于()A.﹣6 B.﹣9 C.﹣30 D.69.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°10.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A.40° B.50° C.60° D.140°11.一个多边形的每一个外角都等于72°,这个多边形是()A.正三角形 B.正方形 C.正五边形 D.正六边形12.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知,,则________.14.如图,以AB为直径的半圆沿弦BC折叠后,AB与相交于点D.若,则∠B=________°.15.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.16.已知函数y=-1,给出一下结论:①y的值随x的增大而减小②此函数的图形与x轴的交点为(1,0)③当x>0时,y的值随x的增大而越来越接近-1④当x≤时,y的取值范围是y≥1以上结论正确的是_________(填序号)17.27的立方根为.18.已知点P是线段AB的黄金分割点,PA>PB,AB=4cm,则PA=____cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.20.(6分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.21.(6分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?22.(8分)解分式方程:-1=23.(8分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.求证:DE是⊙O的切线;若DE=3,CE=2.①求的值;②若点G为AE上一点,求OG+EG最小值.24.(10分)如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度.25.(10分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.26.(12分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化简:.27.(12分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】5.2×105=520000,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、B【解析】
从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.3、A【解析】
由图像经过点(0,m)、(4、m)可知对称轴为x=2,由n<m知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.【详解】∵图像经过点(0,m)、(4、m)∴对称轴为x=2,则,∴4a+b=0∵图像经过点(1,n),且n<m∴抛物线的开口方向向上,∴a>0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.4、D【解析】
A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D.5、C【解析】
根据平行线性质和全等三角形的判定定理逐个分析.【详解】由,得∠B=∠D,因为,若≌,则还需要补充的条件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定.解题关键点:熟记全等三角形判定定理.6、C【解析】
延长BC到E使BE=AD,利用中点的性质得到CM=DE=AB,再利用勾股定理进行计算即可解答.【详解】解:延长BC到E使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故选:C.【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.7、B【解析】
根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.【详解】A、=4,不符合题意;B、是最简二次根式,符合题意;C、=,不符合题意;D、=,不符合题意;故选B.【点睛】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8、A【解析】分析:根据有理数的除法法则计算可得.详解:31÷(﹣1)=﹣(31÷1)=﹣1.故选A.点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.9、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.10、A【解析】试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故选A.11、C【解析】
任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.【详解】360°÷72°=1,则多边形的边数是1.故选C.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.12、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、65°【解析】
根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵m∥n,∠1=105°,∴∠3=180°−∠1=180°−105°=75°∴∠α=∠2−∠3=140°−75°=65°故答案为:65°.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.14、18°【解析】
由折叠的性质可得∠ABC=∠CBD,根据在同圆和等圆中,相等的圆周角所对的弧相等可得,再由和半圆的弧度为180°可得的度数×5=180°,即可求得的度数为36°,再由同弧所对的圆周角的度数为其弧度的一半可得∠B=18°.【详解】解:由折叠的性质可得∠ABC=∠CBD,∴,∵,∴的度数+的度数+的度数=180°,即的度数×5=180°,∴的度数为36°,∴∠B=18°.故答案为:18.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.还考查了圆弧的度数与圆周角之间的关系.15、3.【解析】试题解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案为3.16、②③【解析】(1)因为函数的图象有两个分支,在每个分支上y随x的增大而减小,所以结论①错误;(2)由解得:,∴的图象与x轴的交点为(1,0),故②中结论正确;(3)由可知当x>0时,y的值随x的增大而越来越接近-1,故③中结论正确;(4)因为在中,当时,,故④中结论错误;综上所述,正确的结论是②③.故答案为:②③.17、1【解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算18、2-2【解析】
根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为:(2-2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的,难度一般.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72°;(4).【解析】试题分析:(1)用B的频数除以B所占的百分比即可求得结论;(2)分别求得C的频数及其所占的百分比即可补全统计图;(3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;(4)列出树形图即可求得结论.试题解析:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图;(3),360°×(1-10%-30%-40%)=72°.(4)如图;(列表方法略,参照给分).P(C粽)=.答:他第二个吃到的恰好是C粽的概率是.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.20、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.【解析】
(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.【详解】(1)∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.21、(1)种植A种生姜14亩,种植B种生姜16亩;(2)种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解析】试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:种植A种生姜14亩,种植B种生姜16亩;(2)由题意得,x≥12设全部收购该基地生姜的年总收入为y元,则y=8×2000x+7×2500(30-x)=-1500x+525000,∵y随x的增大而减小,∴当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.22、7【解析】
根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.【详解】-1=3-(x-3)=-13-x+3=-1x=7【点睛】此题主要考查分式方程的求解,解题的关键是正确去掉分母.23、(1)证明见解析(2)①②3【解析】
(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以;②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=3.故OG+EG最小值是3.【详解】(1)连接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切线(2)①解:连接BE∵直径AB∴∠AEB=90°∵圆O与BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②连接OF,交AE于G,由①,设BC=2x,则AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合题意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.故OG+EG最小值是3.【点睛】本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.24、(1)证明见解析(2)①线段EC,CF与BC的数量关系为:CE+CF=BC.②CE+CF=BC(3)【解析】
(1)利用包含60°角的菱形,证明△BAE≌△CAF,可求证;(2)由特殊到一般,证明△CAE′∽△CGE,从而可以得到EC、CF与BC的数量关系(3)连接BD与AC交于点H,利用三角函数BH,AH,CH的长度,最后求BC长度.【详解】解:(1)证明:∵四边形ABCD是菱形,∠BAD=120°,∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,∵∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF,∴EC+CF=EC+BE=BC,即EC+CF=BC;(2)知识探究:①线段EC,CF与BC的数量关系为:CE+CF=BC.理由:如图乙,过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.
类比(1)可得:E′C+CF′=BC,
∵AE′∥EG,
∴△CAE′∽△CGE,,同理可得:,,即;②CE+CF=BC.理由如下:过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.类比(1)可得:E′C+CF′=BC,∵AE′∥EG,∴△CAE′∽△CAE,∴,∴CE=CE′,同理可得:CF=CF′,∴CE+CF=CE′+CF′=(CE′+CF′)=BC,即CE+CF=BC;(3)连接BD与AC交于点H,如图所示:在Rt△ABH中,∵AB=8,∠BAC=60°,∴BH=ABsin60°=8×=,AH=CH=ABcos60°=8×=4,∴GH===1,∴CG
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年安徽省公务员考试《行测》真题及答案解析
- 标准维修合同范文收录
- 服装定制承揽合同样式
- 浙江省金华义乌市某中学2024-2025学年九年级9月月考语文试题(含答案)
- 合同履行培训资料
- 二手手机交易合同范本
- 2024版建筑工程总包合同问答
- 天津市房产预订协议案例
- 2024年度制造业投资合作协议范本
- 七上2济南的冬天 课堂实录
- 电气检修基础专项测试卷附答案
- 事故车报价单Excel模板
- 孕期运动(课堂PPT)课件(PPT 47页)
- 黄瓜育种分析
- 砂石生产各工种安全操作规程
- 高三(6)主题班会:坚持成就梦想
- 从分数到分式的教学设计
- 狭窄隧道汽车双向行PLC控制设计
- 居民消费水平指数与人均可支配收入的计量分析实践报告
- 2021-2022学年高一下学期数学人教A版(2019)必修第二册6.4.2向量在物理中的应用举例课件(11张ppt)
- 《橘子宝宝》PPT
评论
0/150
提交评论