版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()A. B.2 C. D.22.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=3.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:34.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两。问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,则列方程组错误的是()A. B. C. D.5.一个多边形内角和是外角和的2倍,它是()A.五边形 B.六边形 C.七边形 D.八边形6.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°7.下列运算结果为正数的是()A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)8.下列条件中不能判定三角形全等的是()A.两角和其中一角的对边对应相等 B.三条边对应相等C.两边和它们的夹角对应相等 D.三个角对应相等9.如果k<0,b>0,那么一次函数y=kx+b的图象经过()A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限10.下列各数:π,sin30°,﹣,其中无理数的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:8a3﹣8a2+2a=_____.12.在数轴上与所对应的点相距4个单位长度的点表示的数是______.13.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm1.(结果保留π).14.若⊙O所在平面内一点P到⊙O的最大距离为6,最小距离为2,则⊙O的半径为_____.15.分解因式:3ax2﹣3ay2=_____.16.如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______.三、解答题(共8题,共72分)17.(8分)我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?18.(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.19.(8分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF;当四边形ACDE为菱形时,求BD的长.20.(8分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.21.(8分)如图,抛物线y=ax2+bx﹣2经过点A(4,0),B(1,0).(1)求出抛物线的解析式;(2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.22.(10分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.23.(12分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD平分∠ABC;(2)连接EC,若∠A=30°,DC=,求EC的长.24.如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ABHD为矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故选A.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.2、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.3、D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.考点:正多边形和圆.4、D【解析】
由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【详解】解:设每头牛值金x两,每只羊值金y两,
由5头牛、2只羊,值金10两可得:5x+2y=10,
由2头牛、5只羊,值金8两可得2x+5y=8,
则7头牛、7只羊,值金18两,据此可知7x+7y=18,
所以方程组错误,
故选:D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.5、B【解析】
多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【详解】设这个多边形是n边形,根据题意得:(n﹣2)×180°=2×310°解得:n=1.故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6、C【解析】
根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.【详解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故选C.【点睛】本题考查三角形内角和与两条直线平行内错角相等.7、B【解析】
分别根据有理数的加、减、乘、除运算法则计算可得.【详解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;B、1﹣(﹣2)=1+2=3,结果为正数;C、1×(﹣2)=﹣1×2=﹣2,结果为负数;D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;故选B.【点睛】本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.8、D【解析】
解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D.9、D【解析】
根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,
∴一次函数y=kx+b的图象经过第二、四象限.
又∵b>0时,
∴一次函数y=kx+b的图象与y轴交与正半轴.
综上所述,该一次函数图象经过第一、二、四象限.
故选D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10、B【解析】
根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.【详解】sin30°=,=3,故无理数有π,-,故选:B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.二、填空题(本大题共6个小题,每小题3分,共18分)11、2a(2a﹣1)2【解析】
提取2a,再将剩下的4a2-4a+1用完全平方和公式配出(2a﹣1)2,即可得出答案.【详解】原式=2a(4a2-4a+1)=2a(2a﹣1)2.【点睛】本题考查了因式分解,仔细观察题目并提取公因式是解决本题的关键.12、2或﹣1【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.13、9π【解析】
根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC=AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.【详解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=AB=×6=3(cm),∵△ABC以点B为中心顺时针旋转得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=﹣=11π﹣3π=9π(cm1).故答案为9π.【点睛】本题考查了旋转的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,求出阴影部分的面积等于两个扇形的面积的差是解题的关键.14、2或1【解析】
点P可能在圆内.也可能在圆外,因而分两种情况进行讨论.【详解】解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2;当点在圆内时,则这个圆的半径是(6+2)÷2=1.故答案为2或1.【点睛】此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.15、3a(x+y)(x-y)【解析】
解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【点睛】本题考查提公因式法与公式法的综合运用.16、﹣1【解析】
先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的长,从而得DG的最小值.【详解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴点G在以AB为直径的圆上,由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=−1,故答案为−1.【点睛】本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.三、解答题(共8题,共72分)17、1.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1,所以二进制中的数101011等于十进制中的1.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.18、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】
(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)①根据题意,得,即.②根据题意,得,解得.,,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.①当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;③当时,,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.19、(1)证明见解析(2)-1【解析】
(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,△ACF≌△ABEBE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.20、(1)C(﹣3,2);(2)y1=,y2=﹣x+3;(3)3<x<1.【解析】分析:(1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案.详解:(1)作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1=,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=,得﹣1+2c=c,解得c=1,即反比例函数解析式为y1=,此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,∵,∴,∴直线C′B′的解析式为y2=﹣x+3;(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),∴若y1<y2时,则3<x<1.点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性质结合点B、C的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.21、(1)y=﹣x2+x﹣2;(2)当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】
(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.【详解】(1)∵该抛物线过点A(4,0),B(1,0),∴将A与B代入解析式得:,解得:,则此抛物线的解析式为y=﹣x2+x﹣2;(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,过D作y轴的平行线交AC于E,由题意可求得直线AC的解析式为y=x﹣2,∴E点的坐标为(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,则当t=2时,△DAC面积最大为4;(3)存在,如图,设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此时P(2,1);②当==时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年安徽省公务员考试《行测》真题及答案解析
- 标准维修合同范文收录
- 服装定制承揽合同样式
- 浙江省金华义乌市某中学2024-2025学年九年级9月月考语文试题(含答案)
- 合同履行培训资料
- 二手手机交易合同范本
- 2024版建筑工程总包合同问答
- 天津市房产预订协议案例
- 2024年度制造业投资合作协议范本
- 七上2济南的冬天 课堂实录
- 创伤伤口包扎术(加压包扎止血法)技术操作考核评分标准
- 被执行人执行和解申请书
- 安全生产隐患识别图集 问题图片和整改图片对比 危险源识别(上)
- 会计学专业导论PPT
- 《雅思考试介绍》课件
- 中建铁路路基排水沟施工方案
- 幼儿园安全教育课件:《危险的小圆珠》
- 部编初一语文阅读理解最全答题模板与技巧+专项训练练习题
- 门诊特殊病种和治疗项目申请表
- 第四课+はじめまして【核心知识精讲+能力提升拓展】初中日语七年级人教版第一册
- 多模态数据融合与检索技术-多模态数据融合
评论
0/150
提交评论