




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年宁夏回族自治区固原市普通高校对口单招数学摸底卷(含答案)班级:________姓名:________考号:________
一、单选题(20题)1.已知集合,则等于()A.
B.
C.
D.
2.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.600
3.若f(x)=logax(a>0且a≠1)的图像与g(x)=logbx(b>0,b≠1)的关于x轴对称,则下列正确的是()A.a>bB.a=bC.a<bD.AB=1
4.设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
5.A.{-3}
B.{3}
C.{-3,3}
D.
6.A.3个B.2个C.1个D.0个
7.由直线l1:3x+4y-7=0与直线l2:6x+8y+1=0间的距离为()A.8/5B.3/2C.4D.8
8.设集合U={1,2,3,4,5,6},M={1,3,5},则C∪M=()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U
9.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()A.6B.8C.10D.12
10.在△ABC中,“x2
=1”是“x=1”的()
A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
11.若a=(1/2)1/3,b=㏒1/32,c=㏒1/33,则a,b,c的大小关系是()A.b<a<cB.b<c<aC.a<b<cD.c<b<a
12.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.1/100B.1/20C.1/99D.1/50
13.如果直线3x+y=1与2mx+4y-5=0互相垂直,则m为()A.1
B.
C.
D.-2
14.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7
15.椭圆离心率是()A.
B.
C.5/6
D.6/5
16.函数f(x)的定义域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)
17.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π
18.A.(0,4)
B.C.(-2,2)
D.
19.三角函数y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π
20.A.B.C.D.
二、填空题(10题)21.
22.在△ABC中,C=60°,AB=,BC=,那么A=____.
23.设lgx=a,则lg(1000x)=
。
24.log216+cosπ+271/3=
。
25.在锐角三角形ABC中,BC=1,B=2A,则=_____.
26.则a·b夹角为_____.
27.
28.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.
29.
30.
三、计算题(10题)31.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
32.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
33.解不等式4<|1-3x|<7
34.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
35.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
36.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
37.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
38.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
39.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
40.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
四、简答题(10题)41.解关于x的不等式
42.已知a是第二象限内的角,简化
43.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD
44.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。
45.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长
46.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长
47.求证
48.简化
49.由三个正数组成的等比数列,他们的倒数和是,求这三个数
50.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
五、解答题(10题)51.已知圆X2+y2=5与直线2x-y-m=0相交于不同的A,B两点,O为坐标原点.(1)求m的取值范围;(2)若OA丄OB,求实数m的值.
52.如图,在正方体ABCD-A1B1C1D1中,E,F分别为DD1,CC1的中点.求证:(1)AC⊥BD1;(2)AE//平面BFD1.
53.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
54.
55.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.
56.
57.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
58.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1时有极值0.(1)求常数a,b的值;(2)求f(x)的单调区间.
59.
60.已知函数f(x)=x3-3x2-9x+1.(1)求函数f(x)的单调区间.(2)若f(x)-2a+1≥0对Vx∈[-2,4]恒成立,求实数a的取值范围.
六、证明题(2题)61.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
62.△ABC的三边分别为a,b,c,为且,求证∠C=
参考答案
1.B由函数的换算性质可知,f-1(x)=-1/x.
2.B
3.D
4.C充分条件,必要条件,充要条件的判断.由x>1知,x3>1;由x3>1可推出x>1.
5.C
6.C
7.B点到直线的距离公式.因为直线l2的方程可化为3x+4y+1/2=0所以直线l1与直线l2的距离为=3/2
8.A集合补集的计算.C∪M={2,4,6}.
9.B分层抽样方法.试题分析:根据题意,由分层抽样知识可得:在高二年级的学生中应抽取的人数为:40×6/30=8
10.Bx2=1不能得到x=1,但是反之成立,所以是必要不充分条件。
11.D数值的大小关系.由于a>0,b<0,c<0,故a是最大值,而b=-㏒32,c=-㏒23,㏒32>-1>-㏒23即b>c,所以c<b<a
12.B简单随机抽样方法.总体含有100个个体,则每个个体被抽到的概率为1/100,所以以简单随机抽样的方法从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为1/100×5=1/20.
13.C由两条直线垂直可得:,所以答案为C。
14.C分层抽样方法.四类食品的比例为4:1:3:2,则抽取的植物油类的数量为20×1/10=2,抽取的果蔬类的数量为20×2/10=4,二者之和为6,
15.A
16.B由题可知,3-x2大于0,所以定义域为(-3,3)
17.C立体几何的侧面积.由几何体的形成过程所得几何体为圆柱,底面半径为1,高为1,其侧面积S=2πrh=2π×1×1=2π.
18.A
19.A
20.A
21.56
22.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.
23.3+alg(1000x)=lg(1000)+lgx=3+a。
24.66。log216+cosπ+271/3=4+(-1)+3=6。
25.2
26.45°,
27.1
28.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.
29.-2/3
30.(-7,±2)
31.
32.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
33.
34.
35.
36.
37.
38.
39.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
40.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
41.
42.
43.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)
44.
45.
46.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则
47.
48.
49.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1
50.
51.
52.(1)连接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因为BD1包含于平面BDD1→AC⊥BD1.(2)连接EF,因为E,F分别为DD1,CC1的中点,所以EF//DC,且EF=DC,又DC//AB,且EF=AB所以四边形EFBA是平行四边形,所以AE//BF,又因为AE不包含平面BFD1,BF包含于平面BFD1,所以AE//平面BFD1
53.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由题(-3x2+940x+20000)-(10×2000+340x)=22500;化简得,x2-200x+7500=0;解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025工程分包合同范本
- 《金融市场专业术语》课件
- 2025年榕发嘉辰(福州)商业管理有限公司招聘笔试参考题库附带答案详解
- 2025年江苏泰州市泰兴经济开发区国有企业招聘笔试参考题库附带答案详解
- 2025年广东佛山市三水区乐平镇镇属国有企业招聘笔试参考题库含答案解析
- 2025年绍兴柯桥中国轻纺城管道燃气有限公司招聘笔试参考题库含答案解析
- 2025年河北衡水市城市投资控股集团有限公司招聘笔试参考题库含答案解析
- 2025云浮市郁南县千官镇社区工作者考试真题
- 2025十堰市丹江口市三官殿街道社区工作者考试真题
- 美国学前儿童教育体系与实践
- 2025年证券从业资格证考试题库试题及答案
- 管道工程安全管理与保障措施考核试卷
- 猪场出售合同协议
- 电瓶车充电安全培训讲义
- 雨季行车安全教育
- 2024-2025学年人教版八年级地理下学期全册教案
- 人教版数学六年级下册4.3.2图形的放大与缩小练习卷含答案
- 《教育系统重大事故隐患判定指南》解读
- 灌溉排水工程项目可行性研究报告编制
- 公益发展面试题及答案
- 解读2024 ESC急性肺血栓栓塞症诊断治疗指南
评论
0/150
提交评论