解锁协作人工智能的潜力-关于联邦机器学习的社会技术挑战 UNLOCKING THE POTENTIAL OF COLLABORATIVE AI – ON THE SOCIO-TECHNICAL CHALLENGES OF FEDERATED MACHINE LEARNING_第1页
解锁协作人工智能的潜力-关于联邦机器学习的社会技术挑战 UNLOCKING THE POTENTIAL OF COLLABORATIVE AI – ON THE SOCIO-TECHNICAL CHALLENGES OF FEDERATED MACHINE LEARNING_第2页
解锁协作人工智能的潜力-关于联邦机器学习的社会技术挑战 UNLOCKING THE POTENTIAL OF COLLABORATIVE AI – ON THE SOCIO-TECHNICAL CHALLENGES OF FEDERATED MACHINE LEARNING_第3页
解锁协作人工智能的潜力-关于联邦机器学习的社会技术挑战 UNLOCKING THE POTENTIAL OF COLLABORATIVE AI – ON THE SOCIO-TECHNICAL CHALLENGES OF FEDERATED MACHINE LEARNING_第4页
解锁协作人工智能的潜力-关于联邦机器学习的社会技术挑战 UNLOCKING THE POTENTIAL OF COLLABORATIVE AI – ON THE SOCIO-TECHNICAL CHALLENGES OF FEDERATED MACHINE LEARNING_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway1

UNLOCKINGTHEPOTENTIALOFCOLLABORATIVEAI–

ONTHESOCIO-TECHNICALCHALLENGESOF

FEDERATEDMACHINELEARNING

ResearchPaper

TobiasMüller,TechnicalUniversityofMunich,SchoolofComputation,Informationand

Technology,DepartmentofComputerScience,GermanyandSAPSE,Germany,tobias1.mueller@tum.de

MilenaZahn,TechnicalUniversityofMunich,SchoolofComputation,Informationand

Technology,DepartmentofComputerScience,GermanyandSAPSE,Germany,milena.zahn@tum.de

FlorianMatthes,TechnicalUniversityofMunich,SchoolofComputation,Informationand

Technology,DepartmentofComputerScience,Germany,matthes@tum.de

Abstract

ThedisruptivepotentialofAIsystemsrootsintheemergenceofbigdata.Yet,asignificantportionisscatteredandlockedindatasilos,leavingitspotentialuntapped.FederatedMachineLearningisanovelAIparadigmenablingthecreationofAImodelsfromdecentralized,potentiallysiloeddata.Hence,FederatedMachineLearningcouldtechnicallyopendatasilosandthereforeunlockeconomicpotential.However,thisrequirescollaborationbetweenmultiplepartiesowningdatasilos.Settingupcollaborativebusinessmodelsiscomplexandoftenareasonforfailure.CurrentliteraturelacksguidelinesonwhichaspectsmustbeconsideredtosuccessfullyrealizecollaborativeAIprojects.ThisresearchinvestigatesthechallengesofprevailingcollaborativebusinessmodelsanddistinctaspectsofFederatedMachineLearning.Throughasystematicliteraturereview,focusgroup,andexpertinterviews,weprovideasystemizedcollectionofsocio-technicalchallengesandanextendedBusinessModelCanvasfortheinitialviabilityassessmentofcollaborativeAIprojects.

Keywords:FederatedMachineLearning,CollaborativeDataProcessing,BusinessModel,Alliances

1Introduction

ArtificialIntelligence(AI)hadanimmenseeconomicimpactinthelastcoupleofyears.In2021alone,themarketofAI-basedservicesincludingsoftware,hardwareandservicesexceeded500$billionwithafive-yearcompoundannualgrowthrateof17.5%(ForradellasandGallastegui,2021).Thepotentialprofitabilityraiseiscurrentlyestimatedbyanaverageof38%,whichimpliesaneconomicimpactof$14trillionuntil20351.Unmistakably,theusageofAIenablesnew,unprecedentedbusinessmodelswithamonumentalimpactontheindustry.Themainenablerforthisdisruptivenewmarketistheemergenceofbigdata,whichformsthefundamentalbasisforAIsystems.Eventhoughvastamountsofdataisfreelyavailable,aconsiderableamountoftheworld’sdataisscattered,storedandlockedupindecentralizedIoTdevicesanddatasilos.Naturally,thesiloeddataishardlyaccessible,leavingalargeportionofalreadygenerateddata,andthereforeeconomicpotential,largelyuntapped.Theemergence

1/fr-fr/_acnmedia/36dc7f76eab444cab6a7f44017cc3997.pdf

Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway2

Socio-TechnicalChallengesofCollaborativeAI

ofdatasilosisstrengthenedbydataprotectionlawsandregulationssuchastheGeneralDataProtectionRegulation(GDPR),CaliforniaConsumerPrivacyAct,CyberSecurityLawandtheGeneralPrinciplesoftheCivilLaw.Theseregulationsjustifiablyaimtoprotecttheprivacyofindividualsandthereforerestrictdirectdatasharingbetweendifferentparties(Lietal.,2022).Thisprotectionofprivacyisanimportantpursuitbutleadstomoredatasilosandthereforeunusedeconomicpotential.

FederatedMachineLearning(FedML)introducedbyMcMahanetal.(2016)isanovelmachinelearning(ML)technologywiththepotentialofbuildingpredictionmodelsofdecentralizedandthereforesiloeddatasets.Incontrasttotraditional,centralizedML,FedMLsystemsinitiallytrainaglobalMLmodelwhichisthendistributedtoallparticipants.Then,eachparticipantindividuallytrainsthemodellocallyontheirowndataset.Theclientssolelyreturntheupdategradientresultingfromthelocaltraining.Throughthismodel-to-dataapproach,thedataneverleavestheclient’sdevice,butstillenablesthedevelopmentofajointMLmodel.Thus,FedMLenablestappingthepotentialofbigdatawithoutprivacyleakage.

FedMLtechnicallyhasthepotentialtoleveragesiloeddatawhilestillpreservingtheintellectualproperty(IP)andprivacyofeachindividuals’dataset.Hence,FedMLenablestheusageofcurrentlyuntappeddataandthereforebringsthepotentialtobethecatalystfornovel,disruptivebusinessmodelinnovationandlockingunprecedentedvaluefromsiloeddata.However,thisrequiresthecollaborationofmultiplepartieswhichownthesedatasilos.Hence,acollaborativebusinessmodelisneededasaframeworkforhowvaluecanbecreated,anddifferentpartiescanbeincentivizedforparticipatinginsuchacollaborativenetwork.Settingupcollaborativebusinessmodelsiscomplexandapotentialreasonforfailure.Thecurrentliteraturelacksguidelinesfordecision-makersonwhichaspectsmustbeconsideredforthesuccessfulrealizationofcollaborativeAIprojects.

Thisworkaimstowardsclosingthisknowledgegap.Morespecifically,weinvestigatethechallengesofprevailingcollaborativebusinessmodelsthroughasystematicliteraturereviewandidentifydistinctaspectsofcollaborativeFedMLprojectsbyconductingafocusgroupinterviewandmultipleexpertinterviews.Weworktowardsasystemizedcollectionofsocio-technicalchallengesandaneasilyconsumablebusinessmodelcanvas(BMC)toaiddecision-makersintheinitialviabilityassessmentofcollaborativeAIprojects.Summarized,weaimtoanswerthefollowingresearchquestions(RQs):RQ1:Whatarethegeneralchallengesofcollaborativebusinessmodels?

RQ2:Whataretheaspectsofinter-organizationalFedMLbusinessmodelsinrelationtoprevailingcollaborativebusinessmodels?

RQ3:Whichaspectsandattributesshouldbeconsideredforinter-organizationalFedMLprojectsandhowcanthesebestructuredintoanextendedBMC?

Toaddresstheseresearchquestions,wefirstdescribethetheoreticalbackgroundofourstudybyintroducingFederatedMachineLearningandprovidingbackgroundinformationoncollaborativebusinessmodels(section2).Following,weelaborateonourtripartiteresearchmethodology,whichconsistsofasystematicliteraturereview,in-depthfocusgroupinterviews,andsemi-structuredexpertinterviews(section3).Subsequently,wepresenttheresultsofourresearchincludingasystemizedoverviewofchallengesforcollaborativebusinessmodels,astructuredlistofdistinctsocio-technicalaspectsforFedMLprojectsandaproposalforacorrespondingextendedBMC(section4).Finally,wediscussourworkbyreflectingtheunderlyingresearchproblemandresearchgaps.Thediscussionisfollowedbyasummaryofourcontributions,answerstotheRQsandlimitationsofourwork.Ourstudyconcludeswithanoutlineoffutureresearch(section5).

2TheoreticalBackground

Thefollowingsectionpresentsthetheoreticalbackgroundofourstudy.Wefirstdescribethemotivation,terminologies,andthebasicconceptofFedMLasoriginallyproposedbyMcMahanetal.(2016).Subsequently,weprovidegeneralbackgroundinformationonbusinessmodelstoestablishacommon

Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway3

Socio-TechnicalChallengesofCollaborativeAI

understandingforthisstudy.Finally,weelaborateoncollaborativebusinessmodelsandcorrespondingextensionsoftheBMCbyOsterwalderandPigneur(2010).

2.1FederatedMachineLearning

AclassicMLapproachrequiresthecollaboratingparticipantstoassembletheirdatasetsinacentrallocationandtrainauniqueMLmodelMSUM,exposingthedatatoeachotherandthecentralserver.TheparticipantstherebyrisklosingtheirdatasovereigntyandIP,whichinhibitscompaniestocollaborateandsharedata(Schomakersetal.,2020).IntroducedbyMcMahanetal.(2016),FedMLcounteractstheneedofsharingdatasetsthroughamodel-to-dataapproach.AsillustratedinFigure1,aglobalMLmodelischosen,whichisdistributedamongstallclients.Theclientstrainthemodellocallyontheirindividualdataset.Theupdategradientsaresentbacktotheserverandusedtoimprovetheglobalmodel.Thereby,FedMLenablesdataownerstotrainajointmodelMFEDwithouttheneedtodisclosetheirdata.

Figure1.OneiterationoftheFederatedMachineLearningprocess(source:ownwork).

IntheoriginalFedAVGimplementationbyMcMahanetal.(2016)themodelislearnedthrough

stochasticgradientdescent(SGD),whereeachpartykcomputestheaveragegradientgk=7Fk(wt)

Thepartysubmitsthegradientstothecentralserver,whichaggregatestheupdatesfromallpartiesas:

onitslocaldatankatthecurrentmodelwtanditeratesmultipletimesovertheupdatewk←wk−刀gk.

wt+1←wt−/=1w1

w1←w−刀gk,∀k

WhileclassicFedMLoperatesonaclient-serverarchitecture,alternativesthatdonotrelyonacentralorchestratingserverarealsopossible.Forinstance,partiescanexchangemodelupdatesbyestablishing

apeer-to-peernetwork,increasingthesecurityoftheprocessattheexpenseofconsumingmorebandwidthandresourcesforencryption(Royetal.,2019).

Moreover,thedistributionoffeaturesandsamplesacrossdatasetsmaynotbehomogeneous.Horizontal

FederatedLearning(HFL)referstothesetupinwhichalldatasets{D1}fromtheKpartiescontain

differentsamplesthatsharethesamefeaturespace.Ifinstead,thesamesamplesarepresentinall

datasets,butfeaturespacesaredisjoint,thesetupisknownasVerticalFederatedLearning(VFL).

Consideringthehighheterogeneityofdata,especiallyifspreadacrossdifferentorganizations,some

authorshaveproposedtoovercometheproblemofsparseoverlappingdatasetsthroughFederated

TransferLearning(FTL)(Liuetal.,2020).Inthisscheme,partiesmayselectsamplesfortrainingthat

minimizesthedistancebetweentheirdistributions(instance-basedFTL)orlearnacommonfeature

spacecollaboratively(feature-basedFTL).Alternatively,partiesmaystartbyusingpre-trainedmodels

orbylearningmodelsfromalignedsamplestoinfermissingfeaturesandlabels(model-basedFTL).

Finally,itisimportanttonotethattheperformancesvSUMandvFEDoftherespectivecentralizedand

vFED<6andwillbestronglydependentonthecharacteristicsoftheparticularapplication.

federatedmodels,mightdifferconsiderably.Thisperformancegap6ischaracterizedbyvSUM−

Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway4

Socio-TechnicalChallengesofCollaborativeAI

Consequently,FedMLintroducesapotentialtrade-offbetweenthelossofperformancerespecttothecentralizedsetupandtheprivacyguaranteesprovidedbythedistributedapproach(Yangetal.,2019).

2.2CollaborativeBusinessModels

Abusinessmodeldescribesessentialaspectsofanorganization,explaininghowtheorganizationcreates,delivers,andcapturesvalue(OsterwalderandPigneur,2010).Intheacademicliterature,thedefinitionofthetermisfragmented,andnoconsistentboundariesareestablished.Nevertheless,itcanbestatedthatabusinessmodelprovidesanorganizationalandstrategicdesignforimplementingabusinessopportunity(George,2011).

Inaddition,OsterwalderandPigneur(2010)arguethatasharedunderstandingofthebusinessmodeliscrucialtoitscreationandsuccess.Therefore,creatinganddiscussingabusinessmodelrequiresasimple,relevant,andintuitivelyunderstandableconceptwithoutoversimplifyingthecomplexityofhowtheorganizationworks.TheBMCbyOsterwalderandPigneur(2010)isatooloftenusedinpracticetopresentabusinessmodelstructuredinninecomponents.

Businessmodelsarenotonlyusedforasinglecompanybutcanalsosupportassessingthefeasibilityandprofitabilityofcollaborationsacrosscompanies(KristensenandUcler,2016).Thetrendofaninterconnectedanddynamicenvironmentencouragesorganizationstocollaborateinter-organizationallyandco-createvalue(DiirrandCappelli,2018).Inliterature,nounifiedframeworkexistsforcollaborations.Still,someapproachesutilizeOsterwalderandPigneur(2010)generalapproachofabusinessmodelasabasisandcustomizeittosetahigherfocusonspecifics(KristensenandUcler,2016).Forexample,EppingerandKamprath(2011)highlighttheimportanceofapartnerandcustomernetworkinpersonalizedmedicinebymodifyingthecanvascomponentsandaddingnewones,likeintellectualpropertystrategy.Theapproachesintheliteraturereachfrommodificationsofbusinessmodelcomponents(e.g.,EppingerandKamprath(2011)orKristensenandUcler(2016)),toconfigurationoptionsofthebusinessmodel(e.g.,Curtis(2021)orManandLuvison(2019)).However,thecustomizationsaremainlyapplication-oriented,tailoredtotheprojecttosuittheneedsandcaptureuniquefeaturesinfluencingthebusinessmodelandthusdecisivefortheproject'ssuccess.

3Methodology

Thisresearchwasstructuredintothreedistinctparts.Afterasystematicliteraturereview(SLR)togainanoverviewofthechallengesofcollaborativebusinessmodels,weorganizedanin-depthfocusgroupinterviewtoexplorethenovelfieldofinter-organizationalFedMLbusinessmodels.Bythis,weaimedtoaugmentthefindingsfromtheSLRandidentifydistinctchallengesofbusinessmodelsforcollaborativeFedMLprojects.Sincefocusgroupsarecharacterizedbytheirhomogeneousgroupdemographic,wepursuedmoregenericallyapplicableresultsbyconductingadditionalsemi-structuredexpertinterviews.Theresearchtimelineisdisplayedinfigure2.Thefollowingsubsectionswillgointomoredetailabouttheusedresearchmethodologies.

Figure2.ResearchTimeline

Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway5

Socio-TechnicalChallengesofCollaborativeAI

3.1SystematicLiteratureReview

Toassessandidentifythechallengesofprevailingcollaborativebusinessmodels,weconductedasystematicliteraturereview.Bythis,weintendtoextractfundamentalsandcriticalattributesofbusinessmodelsforinter-organizationalcollaborations,whichwillbecollected,structured,andsummarized.WefollowedasearchstrategybyZhangetal.(2011)toidentifythemostrelevantliterature.Hence,thesearchisdividedintobaseliteraturesearch,mainsearch,andbackwardsearch.

TheBaseLiteratureconsistsof13papersincludingfivepublicationsonbusinessmodeltheoryandeightoncollaborativeprojectswhichwereknownbytheauthorspriortothesearch.Basedontheinitialliteraturecorpus,wefocusedonfindingkeywordsrelatedtointer-organizationalbusinessmodels.TheresultingsearchstringSisasfollows:

String

Query

S1

(collaborate*ORfederatedORinterorganization*ORinter-organization*ORintercompanyOR

cross-companyORmulti-partyORcross-industr*ORmulti-institution*ORsharedORsharing

ORallianceORnetworked)

S2

(“businessmodel*”OR“modelcanvas”OR“businessvaluemodel*”)

S

S1ANDS2

Table1.Compiledsearchstringforthedatabasesearch.

TheMainSearchwasconductedfromApril2022toJune2022.ThelistofsearcheddatabasescomprisesIEEEXplore,ACMDigitalLibrary,ScienceDirect,WileyInterScienceandSCOPUS.Weonlyincludedpeer-reviewedEnglishandGermanpublicationswithfull-textaccess.WiththedefinedsearchstringS,databases,andcriteriawecollected262distinctpublications.Weonlyaimtoincludeworkinthefieldofcomputerscienceandtechnology(coarsefocus)aswellasliteratureregardinginter-organizationalcollaborationsandbusinessmodels(narrowfocus).Successively,thecorpusconsistingof262distinctpublicationshasbeenfilteredsolelybytitle,abstractandfulltextregardingthedefinedcoarseandnarrowfocus.Bythis,18publicationsremained.

FortheBackwardSearch,wescannedthereferencesoftheresulting18publicationsfromthemainsearch.Again,thesereferencedpublicationswerefilteredbytitle,abstractandbodyaccordingtotheinclusionandexclusioncriteria.Aftereliminatingduplicates,weaddedonefurtherstudyresultinginatotalof19publications.

Finally,relevantinformationwasextractedandsynthesizedfromthefinalliteraturecorpus.Thestructuredandconsolidatedoutputyieldedasetofcriticalattributesandchallengesofbusinessmodelsforinter-organizationalcollaborationsinthetechnologicalsector.InthefollowingeveryinsightfromtheSLRisreferencedasusualwiththecorrespondingpublication.

3.2In-depthGroupInterview

BasedontheidentifiedchallengesofprevailingcollaborativebusinessmodelsfromtheSLR,weaimedtoexplorethedistinctaspectsofcollaborativebusinessmodelsforinter-organizationalFedMLprojects.Duetothenoveltyofthetopicandtheneedforexploration,weorganizedanin-depthfocusgroupinterview(DilshadandLatif,2013)tostudythebusinessrequirementsofcollaborativeMLprojectsbasedonthefindingsfromtheSLR.

Thefocusgroupconsistedoffiveparticipantsandtwomoderators,whereonemoderatorensuressmoothprogressandtheotherensuresthatalltopicsarecovered.AllparticipantsworkedonaprojectinvolvingtheadoptionofFedMLinacross-companyusecase.TheparticipantswerebriefedaboutcollaborativebusinessmodelsandweregivenanoverviewofthefindingsfromtheSLR.Afterwards,thegroupwas

Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway6

Socio-TechnicalChallengesofCollaborativeAI

askedaboutthecriticalattributesandchallengesofbusinessmodelsrelatedtotheircollaborativeFedMLprojectfollowedbyareflectionandlivelydiscussion.Throughthis,wewereabletoidentifyfurtherchallengesbasedontheirreal-worldexperiences.TheemergingdatawascodedbytworesearchersandincorporatedintotheresultsoftheSLR.Inthefollowing,everyinsightwhichwasgainedthroughthein-depthfocusgroupinterviewisreferencedviatheindex(FG).

3.3Semi-StructuredExpertInterviews

Eventhoughthefocusgrouphelpedexplorethesocio-technicalchallengesofFedMLcollaborations,theinsightsmightbehighlybiasedduetothehomogeneousdemographicsoftheparticipants.Togainamoregenericallyapplicableunderstanding,weaimedtodrawfromtheexperiencesoffurtherexpertsworkinginthefieldofappliedAI,especiallywithexperienceinFedMLprojects.Fortheseexpertinterviews,wedrawfromtheGroundedTheorymethodology(Hodaetal.,2011).Hence,weconfrontedtheintervieweeswithasetofpre-definedquestionsandrecordedaswellastranscribedtheinterviews.Wesuccessivelyconductedandcomparedtheresultsofeachinterview.After5interviewstheoreticalsaturationwasreachedandconsequently,theinterviewstudywasclosed.Thesetofintervieweesrepresentedamorediversesetofexpertsfromdifferentorganizationsanddomains.Table1presentsacodifiedtableofoursample.WedevelopedaninterviewguidebasedontheresearchquestionsandfindingsfromtheSLRaswellasthefocusgroupinterviewincludingopenquestionsaboutpotentiallymissingattributes,challenges,andfurtherinsights.Theseinterviewsallowedustogomorein-depthandidentifymissingaspectsandgainmoredetailed,in-depthindividualunderstandingtodeveloptheguidelinequestionnairefurther.

Theintervieweesallowedthefindingstobepublishedinananonymizedmannerbutdidnotagreetodisclosethefulltranscriptions.Therefore,thefulltranscriptsarenotincluded.Thefindingsfromthesemi-structuredinterviewsarereferencedinthefollowingwiththeparticipantIDaslistedintable2.

ParticipantID

Position

Organization

Duration

E1

AIBusinessDeveloper

LargeGermansoftwareenterprise

52

E2

AIProjectLead

LargeGermansoftwareenterprise

44

E3

PrincipalDataScientist

LargeGermansoftwareenterprise

45

E4

AppliedResearcher

Medium-sizedinnovationcompany

35

E5

ScientificResearcher

Researchinstituteforsoftwaredevelopment

59

Table2.InterviewStudyParticipants

4Socio-TechnicalChallengesofInterorganizationalFederatedMachineLearning

Applyingcollaborativemodelscanbechallengingindifferentdomains,especiallywhenseveralcompaniesareinvolved.Whenthebusinessisoperationalized,complexityincreasessignificantlybecausethegeneralbusinessmodelideaneedstobalancetheinterestsofallparticipants(Paunaetal.,2021).Collaborationswithmultipleparticipantsarecomplexinnature,andcollaborationfailureratesarehigh,leavingmuchrevenueatriskandunrealizedvalue(ManandLuvison,2019).Moreover,aligningthebusinessmodelwithoperationalandgovernance-relatedaspectsissuggestedtohelppositiontheorganizationtodeliveronitsvaluepropositionforasuccessfulimplementationofthebusinessmodel(Curtis,2021).Hence,earlyidentificationofthecollaborationchallengesiscriticalforthesuccessfulcreationofthecollaborativebusinessmodel.

Tobetterunderstandwhichspecificcollaborationchallengesshouldbeconsidered,wefirstinvestigatethechallengesofprevailinginter-organizationalbusinessmodelsand,secondly,whichFedML-related

Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway7

Socio-TechnicalChallengesofCollaborativeAI

socio-technicalaspectsarecriticalforsuccessfulimplementationandthereforeshouldbeconsideredinacorrespondingcollaborativebusinessmodel.

4.1ChallengesofCollaborativeBusinessModels

Jointworkofdifferentorganizationsiscomplex,andorganizationsshouldbepreparedtofacechallengesarisingfromcooperation.Inthefollowing,wegiveanoverviewofthesystematizedresultsoftheSLRonthechallengesofinter-organizationalbusinessmodels.WepresentourkeyresultsinastructuredmannerbasedontheworkofDiirrandCappelli(2018).

DiirrandCappelli(2018)dividethechallengesofinter-organizationalcollaborationsintothreecategories:external,internal,andnetwork-relatedchallenges.Externalandinternalchallengesaredetachedfrominter-organizationalcollaboration.Externalchallengesrelatetoenvironmentalchallenges,e.g.,naturalevents,andinternalchallengesarisefrominsidetheproject,forexample,infrastructureproblems.Network-relatedchallengesfocusontherelationshipsandinteractionsbetweenorganizationsandcanbefurthersubdividedintomanagement,businessprocess,andcollaborationchallenges(DiirrandCappelli,2018).BasedonthesecategoriesinconjunctionwiththefindingsoftheSLRwederivedthefollowingnetwork-relatedchallengesaslistedintable3.

Category

Description

Aspects

Management

Challenges

the

Includehoworganizationscreateandestablishcollaboration,compromisingthefollowingaspects

Selectionofsuitableparticipatingactors(Paunaetal.,2021).

Changemanagementfordynamiccollaboration(Caridàetal.,2015;Redlichetal.,2014).

Cooperationestablishment:lackofcommitmentfromparticipatingorganizations(ProulxandGardoni,2020);buildingandexpandingtrustbetweentheparties(Blejaetal.,2020;DiirrandCappelli,2018;Redlichetal.,2014).

Decision-makingandcoordinationslownesswithinthecollaboration(Blejaetal.,2020;Caridàetal.,2015;DiirrandCappelli,2018;Redlichetal.,2014).

Communicationwithgovernmentauthoritiesrequiresadifferentapproachduetomultipleparties'interactions(Paunaetal.,2021).

BusinessProcessChallenges

Addresseswayorganization’sstructureanddesignpartnershipoperations

Definitionofamutualbusinessgoalofthecollaboration(DiirrandCappelli,2018).

Co-CreationManagementfordeliveringthevalueproposition:

•Distributionoffinancials,investment(Paunaetal.,2021),costs,andrevenues(Blejaetal.,2020;Caridàetal.,2015;Paunaetal.,2021).

•Riskallocation(DiirrandCappelli,2018).

•Ownershipstructure(DiirrandCappelli,2018;Kujalaetal.,2020).

•Responsibilityassignment(DiirrandCappelli,2018).

•Alignonqualityofco-creationproduct(DiirrandCappelli,2018).

•IntellectualpropertyManagement(EppingerandKamprath,2011).

Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway8

Socio-TechnicalChallengesofCollaborativeAI

Slowerbusinessstrategyandprocessidentification(Berkersetal.,2020;DiirrandCappelli,2018).

Alignmentofthestructuresofheterogeneousorganizationswithdistinctcharacteristics(DiirrandCappelli,2018).

Infrastructureformanagingrelationshipsbetweenmultiplecollaborationactors(Caridàetal.,2015;DiirrandCappelli,2018).

Collaboration

Challenges

Describe

how

organizationsjointlyworktogethertoachievethegoalofcollaboration

Agreementoncollaborationandalignmentwiththeorganizations'ownobjectives(Blejaetal.,2020;CostaandDaCunha,2015;DiirrandCappelli,2018;ManandLuvison,2019;Paunaetal.,2021).

Alignmentofdifferentorganizations:cultureandcommonethics(Blejaetal.,2020;DiirrandCappelli,2018;Kujalaetal.,2020).

Riskofopportunismofparticipantsandconsequencesofaction(DiirrandCappelli,2018).

Table3.OverviewofChallengesforInter-OrganizationalCollaborations

ThisoverviewofchallengesisaconsolidationoftheselectedacademicsourcesoftheSLRandaimstoprovideageneralunderstandingofthedifficultiesofsuchcollaborations.Itisimportanttonotethatnaturally,thislistmightnotbecomprehensiveandthatcertain,potentiallyimportant,aspectsmightbemissing.

4.2AspectsofInterorganizationalFedMLBusinessModels

Toprovideinitialguidanceinthecreatio

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论