版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway1
UNLOCKINGTHEPOTENTIALOFCOLLABORATIVEAI–
ONTHESOCIO-TECHNICALCHALLENGESOF
FEDERATEDMACHINELEARNING
ResearchPaper
TobiasMüller,TechnicalUniversityofMunich,SchoolofComputation,Informationand
Technology,DepartmentofComputerScience,GermanyandSAPSE,Germany,tobias1.mueller@tum.de
MilenaZahn,TechnicalUniversityofMunich,SchoolofComputation,Informationand
Technology,DepartmentofComputerScience,GermanyandSAPSE,Germany,milena.zahn@tum.de
FlorianMatthes,TechnicalUniversityofMunich,SchoolofComputation,Informationand
Technology,DepartmentofComputerScience,Germany,matthes@tum.de
Abstract
ThedisruptivepotentialofAIsystemsrootsintheemergenceofbigdata.Yet,asignificantportionisscatteredandlockedindatasilos,leavingitspotentialuntapped.FederatedMachineLearningisanovelAIparadigmenablingthecreationofAImodelsfromdecentralized,potentiallysiloeddata.Hence,FederatedMachineLearningcouldtechnicallyopendatasilosandthereforeunlockeconomicpotential.However,thisrequirescollaborationbetweenmultiplepartiesowningdatasilos.Settingupcollaborativebusinessmodelsiscomplexandoftenareasonforfailure.CurrentliteraturelacksguidelinesonwhichaspectsmustbeconsideredtosuccessfullyrealizecollaborativeAIprojects.ThisresearchinvestigatesthechallengesofprevailingcollaborativebusinessmodelsanddistinctaspectsofFederatedMachineLearning.Throughasystematicliteraturereview,focusgroup,andexpertinterviews,weprovideasystemizedcollectionofsocio-technicalchallengesandanextendedBusinessModelCanvasfortheinitialviabilityassessmentofcollaborativeAIprojects.
Keywords:FederatedMachineLearning,CollaborativeDataProcessing,BusinessModel,Alliances
1Introduction
ArtificialIntelligence(AI)hadanimmenseeconomicimpactinthelastcoupleofyears.In2021alone,themarketofAI-basedservicesincludingsoftware,hardwareandservicesexceeded500$billionwithafive-yearcompoundannualgrowthrateof17.5%(ForradellasandGallastegui,2021).Thepotentialprofitabilityraiseiscurrentlyestimatedbyanaverageof38%,whichimpliesaneconomicimpactof$14trillionuntil20351.Unmistakably,theusageofAIenablesnew,unprecedentedbusinessmodelswithamonumentalimpactontheindustry.Themainenablerforthisdisruptivenewmarketistheemergenceofbigdata,whichformsthefundamentalbasisforAIsystems.Eventhoughvastamountsofdataisfreelyavailable,aconsiderableamountoftheworld’sdataisscattered,storedandlockedupindecentralizedIoTdevicesanddatasilos.Naturally,thesiloeddataishardlyaccessible,leavingalargeportionofalreadygenerateddata,andthereforeeconomicpotential,largelyuntapped.Theemergence
1/fr-fr/_acnmedia/36dc7f76eab444cab6a7f44017cc3997.pdf
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway2
Socio-TechnicalChallengesofCollaborativeAI
ofdatasilosisstrengthenedbydataprotectionlawsandregulationssuchastheGeneralDataProtectionRegulation(GDPR),CaliforniaConsumerPrivacyAct,CyberSecurityLawandtheGeneralPrinciplesoftheCivilLaw.Theseregulationsjustifiablyaimtoprotecttheprivacyofindividualsandthereforerestrictdirectdatasharingbetweendifferentparties(Lietal.,2022).Thisprotectionofprivacyisanimportantpursuitbutleadstomoredatasilosandthereforeunusedeconomicpotential.
FederatedMachineLearning(FedML)introducedbyMcMahanetal.(2016)isanovelmachinelearning(ML)technologywiththepotentialofbuildingpredictionmodelsofdecentralizedandthereforesiloeddatasets.Incontrasttotraditional,centralizedML,FedMLsystemsinitiallytrainaglobalMLmodelwhichisthendistributedtoallparticipants.Then,eachparticipantindividuallytrainsthemodellocallyontheirowndataset.Theclientssolelyreturntheupdategradientresultingfromthelocaltraining.Throughthismodel-to-dataapproach,thedataneverleavestheclient’sdevice,butstillenablesthedevelopmentofajointMLmodel.Thus,FedMLenablestappingthepotentialofbigdatawithoutprivacyleakage.
FedMLtechnicallyhasthepotentialtoleveragesiloeddatawhilestillpreservingtheintellectualproperty(IP)andprivacyofeachindividuals’dataset.Hence,FedMLenablestheusageofcurrentlyuntappeddataandthereforebringsthepotentialtobethecatalystfornovel,disruptivebusinessmodelinnovationandlockingunprecedentedvaluefromsiloeddata.However,thisrequiresthecollaborationofmultiplepartieswhichownthesedatasilos.Hence,acollaborativebusinessmodelisneededasaframeworkforhowvaluecanbecreated,anddifferentpartiescanbeincentivizedforparticipatinginsuchacollaborativenetwork.Settingupcollaborativebusinessmodelsiscomplexandapotentialreasonforfailure.Thecurrentliteraturelacksguidelinesfordecision-makersonwhichaspectsmustbeconsideredforthesuccessfulrealizationofcollaborativeAIprojects.
Thisworkaimstowardsclosingthisknowledgegap.Morespecifically,weinvestigatethechallengesofprevailingcollaborativebusinessmodelsthroughasystematicliteraturereviewandidentifydistinctaspectsofcollaborativeFedMLprojectsbyconductingafocusgroupinterviewandmultipleexpertinterviews.Weworktowardsasystemizedcollectionofsocio-technicalchallengesandaneasilyconsumablebusinessmodelcanvas(BMC)toaiddecision-makersintheinitialviabilityassessmentofcollaborativeAIprojects.Summarized,weaimtoanswerthefollowingresearchquestions(RQs):RQ1:Whatarethegeneralchallengesofcollaborativebusinessmodels?
RQ2:Whataretheaspectsofinter-organizationalFedMLbusinessmodelsinrelationtoprevailingcollaborativebusinessmodels?
RQ3:Whichaspectsandattributesshouldbeconsideredforinter-organizationalFedMLprojectsandhowcanthesebestructuredintoanextendedBMC?
Toaddresstheseresearchquestions,wefirstdescribethetheoreticalbackgroundofourstudybyintroducingFederatedMachineLearningandprovidingbackgroundinformationoncollaborativebusinessmodels(section2).Following,weelaborateonourtripartiteresearchmethodology,whichconsistsofasystematicliteraturereview,in-depthfocusgroupinterviews,andsemi-structuredexpertinterviews(section3).Subsequently,wepresenttheresultsofourresearchincludingasystemizedoverviewofchallengesforcollaborativebusinessmodels,astructuredlistofdistinctsocio-technicalaspectsforFedMLprojectsandaproposalforacorrespondingextendedBMC(section4).Finally,wediscussourworkbyreflectingtheunderlyingresearchproblemandresearchgaps.Thediscussionisfollowedbyasummaryofourcontributions,answerstotheRQsandlimitationsofourwork.Ourstudyconcludeswithanoutlineoffutureresearch(section5).
2TheoreticalBackground
Thefollowingsectionpresentsthetheoreticalbackgroundofourstudy.Wefirstdescribethemotivation,terminologies,andthebasicconceptofFedMLasoriginallyproposedbyMcMahanetal.(2016).Subsequently,weprovidegeneralbackgroundinformationonbusinessmodelstoestablishacommon
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway3
Socio-TechnicalChallengesofCollaborativeAI
understandingforthisstudy.Finally,weelaborateoncollaborativebusinessmodelsandcorrespondingextensionsoftheBMCbyOsterwalderandPigneur(2010).
2.1FederatedMachineLearning
AclassicMLapproachrequiresthecollaboratingparticipantstoassembletheirdatasetsinacentrallocationandtrainauniqueMLmodelMSUM,exposingthedatatoeachotherandthecentralserver.TheparticipantstherebyrisklosingtheirdatasovereigntyandIP,whichinhibitscompaniestocollaborateandsharedata(Schomakersetal.,2020).IntroducedbyMcMahanetal.(2016),FedMLcounteractstheneedofsharingdatasetsthroughamodel-to-dataapproach.AsillustratedinFigure1,aglobalMLmodelischosen,whichisdistributedamongstallclients.Theclientstrainthemodellocallyontheirindividualdataset.Theupdategradientsaresentbacktotheserverandusedtoimprovetheglobalmodel.Thereby,FedMLenablesdataownerstotrainajointmodelMFEDwithouttheneedtodisclosetheirdata.
Figure1.OneiterationoftheFederatedMachineLearningprocess(source:ownwork).
IntheoriginalFedAVGimplementationbyMcMahanetal.(2016)themodelislearnedthrough
stochasticgradientdescent(SGD),whereeachpartykcomputestheaveragegradientgk=7Fk(wt)
Thepartysubmitsthegradientstothecentralserver,whichaggregatestheupdatesfromallpartiesas:
onitslocaldatankatthecurrentmodelwtanditeratesmultipletimesovertheupdatewk←wk−刀gk.
wt+1←wt−/=1w1
w1←w−刀gk,∀k
WhileclassicFedMLoperatesonaclient-serverarchitecture,alternativesthatdonotrelyonacentralorchestratingserverarealsopossible.Forinstance,partiescanexchangemodelupdatesbyestablishing
apeer-to-peernetwork,increasingthesecurityoftheprocessattheexpenseofconsumingmorebandwidthandresourcesforencryption(Royetal.,2019).
Moreover,thedistributionoffeaturesandsamplesacrossdatasetsmaynotbehomogeneous.Horizontal
FederatedLearning(HFL)referstothesetupinwhichalldatasets{D1}fromtheKpartiescontain
differentsamplesthatsharethesamefeaturespace.Ifinstead,thesamesamplesarepresentinall
datasets,butfeaturespacesaredisjoint,thesetupisknownasVerticalFederatedLearning(VFL).
Consideringthehighheterogeneityofdata,especiallyifspreadacrossdifferentorganizations,some
authorshaveproposedtoovercometheproblemofsparseoverlappingdatasetsthroughFederated
TransferLearning(FTL)(Liuetal.,2020).Inthisscheme,partiesmayselectsamplesfortrainingthat
minimizesthedistancebetweentheirdistributions(instance-basedFTL)orlearnacommonfeature
spacecollaboratively(feature-basedFTL).Alternatively,partiesmaystartbyusingpre-trainedmodels
orbylearningmodelsfromalignedsamplestoinfermissingfeaturesandlabels(model-basedFTL).
Finally,itisimportanttonotethattheperformancesvSUMandvFEDoftherespectivecentralizedand
vFED<6andwillbestronglydependentonthecharacteristicsoftheparticularapplication.
federatedmodels,mightdifferconsiderably.Thisperformancegap6ischaracterizedbyvSUM−
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway4
Socio-TechnicalChallengesofCollaborativeAI
Consequently,FedMLintroducesapotentialtrade-offbetweenthelossofperformancerespecttothecentralizedsetupandtheprivacyguaranteesprovidedbythedistributedapproach(Yangetal.,2019).
2.2CollaborativeBusinessModels
Abusinessmodeldescribesessentialaspectsofanorganization,explaininghowtheorganizationcreates,delivers,andcapturesvalue(OsterwalderandPigneur,2010).Intheacademicliterature,thedefinitionofthetermisfragmented,andnoconsistentboundariesareestablished.Nevertheless,itcanbestatedthatabusinessmodelprovidesanorganizationalandstrategicdesignforimplementingabusinessopportunity(George,2011).
Inaddition,OsterwalderandPigneur(2010)arguethatasharedunderstandingofthebusinessmodeliscrucialtoitscreationandsuccess.Therefore,creatinganddiscussingabusinessmodelrequiresasimple,relevant,andintuitivelyunderstandableconceptwithoutoversimplifyingthecomplexityofhowtheorganizationworks.TheBMCbyOsterwalderandPigneur(2010)isatooloftenusedinpracticetopresentabusinessmodelstructuredinninecomponents.
Businessmodelsarenotonlyusedforasinglecompanybutcanalsosupportassessingthefeasibilityandprofitabilityofcollaborationsacrosscompanies(KristensenandUcler,2016).Thetrendofaninterconnectedanddynamicenvironmentencouragesorganizationstocollaborateinter-organizationallyandco-createvalue(DiirrandCappelli,2018).Inliterature,nounifiedframeworkexistsforcollaborations.Still,someapproachesutilizeOsterwalderandPigneur(2010)generalapproachofabusinessmodelasabasisandcustomizeittosetahigherfocusonspecifics(KristensenandUcler,2016).Forexample,EppingerandKamprath(2011)highlighttheimportanceofapartnerandcustomernetworkinpersonalizedmedicinebymodifyingthecanvascomponentsandaddingnewones,likeintellectualpropertystrategy.Theapproachesintheliteraturereachfrommodificationsofbusinessmodelcomponents(e.g.,EppingerandKamprath(2011)orKristensenandUcler(2016)),toconfigurationoptionsofthebusinessmodel(e.g.,Curtis(2021)orManandLuvison(2019)).However,thecustomizationsaremainlyapplication-oriented,tailoredtotheprojecttosuittheneedsandcaptureuniquefeaturesinfluencingthebusinessmodelandthusdecisivefortheproject'ssuccess.
3Methodology
Thisresearchwasstructuredintothreedistinctparts.Afterasystematicliteraturereview(SLR)togainanoverviewofthechallengesofcollaborativebusinessmodels,weorganizedanin-depthfocusgroupinterviewtoexplorethenovelfieldofinter-organizationalFedMLbusinessmodels.Bythis,weaimedtoaugmentthefindingsfromtheSLRandidentifydistinctchallengesofbusinessmodelsforcollaborativeFedMLprojects.Sincefocusgroupsarecharacterizedbytheirhomogeneousgroupdemographic,wepursuedmoregenericallyapplicableresultsbyconductingadditionalsemi-structuredexpertinterviews.Theresearchtimelineisdisplayedinfigure2.Thefollowingsubsectionswillgointomoredetailabouttheusedresearchmethodologies.
Figure2.ResearchTimeline
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway5
Socio-TechnicalChallengesofCollaborativeAI
3.1SystematicLiteratureReview
Toassessandidentifythechallengesofprevailingcollaborativebusinessmodels,weconductedasystematicliteraturereview.Bythis,weintendtoextractfundamentalsandcriticalattributesofbusinessmodelsforinter-organizationalcollaborations,whichwillbecollected,structured,andsummarized.WefollowedasearchstrategybyZhangetal.(2011)toidentifythemostrelevantliterature.Hence,thesearchisdividedintobaseliteraturesearch,mainsearch,andbackwardsearch.
TheBaseLiteratureconsistsof13papersincludingfivepublicationsonbusinessmodeltheoryandeightoncollaborativeprojectswhichwereknownbytheauthorspriortothesearch.Basedontheinitialliteraturecorpus,wefocusedonfindingkeywordsrelatedtointer-organizationalbusinessmodels.TheresultingsearchstringSisasfollows:
String
Query
S1
(collaborate*ORfederatedORinterorganization*ORinter-organization*ORintercompanyOR
cross-companyORmulti-partyORcross-industr*ORmulti-institution*ORsharedORsharing
ORallianceORnetworked)
S2
(“businessmodel*”OR“modelcanvas”OR“businessvaluemodel*”)
S
S1ANDS2
Table1.Compiledsearchstringforthedatabasesearch.
TheMainSearchwasconductedfromApril2022toJune2022.ThelistofsearcheddatabasescomprisesIEEEXplore,ACMDigitalLibrary,ScienceDirect,WileyInterScienceandSCOPUS.Weonlyincludedpeer-reviewedEnglishandGermanpublicationswithfull-textaccess.WiththedefinedsearchstringS,databases,andcriteriawecollected262distinctpublications.Weonlyaimtoincludeworkinthefieldofcomputerscienceandtechnology(coarsefocus)aswellasliteratureregardinginter-organizationalcollaborationsandbusinessmodels(narrowfocus).Successively,thecorpusconsistingof262distinctpublicationshasbeenfilteredsolelybytitle,abstractandfulltextregardingthedefinedcoarseandnarrowfocus.Bythis,18publicationsremained.
FortheBackwardSearch,wescannedthereferencesoftheresulting18publicationsfromthemainsearch.Again,thesereferencedpublicationswerefilteredbytitle,abstractandbodyaccordingtotheinclusionandexclusioncriteria.Aftereliminatingduplicates,weaddedonefurtherstudyresultinginatotalof19publications.
Finally,relevantinformationwasextractedandsynthesizedfromthefinalliteraturecorpus.Thestructuredandconsolidatedoutputyieldedasetofcriticalattributesandchallengesofbusinessmodelsforinter-organizationalcollaborationsinthetechnologicalsector.InthefollowingeveryinsightfromtheSLRisreferencedasusualwiththecorrespondingpublication.
3.2In-depthGroupInterview
BasedontheidentifiedchallengesofprevailingcollaborativebusinessmodelsfromtheSLR,weaimedtoexplorethedistinctaspectsofcollaborativebusinessmodelsforinter-organizationalFedMLprojects.Duetothenoveltyofthetopicandtheneedforexploration,weorganizedanin-depthfocusgroupinterview(DilshadandLatif,2013)tostudythebusinessrequirementsofcollaborativeMLprojectsbasedonthefindingsfromtheSLR.
Thefocusgroupconsistedoffiveparticipantsandtwomoderators,whereonemoderatorensuressmoothprogressandtheotherensuresthatalltopicsarecovered.AllparticipantsworkedonaprojectinvolvingtheadoptionofFedMLinacross-companyusecase.TheparticipantswerebriefedaboutcollaborativebusinessmodelsandweregivenanoverviewofthefindingsfromtheSLR.Afterwards,thegroupwas
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway6
Socio-TechnicalChallengesofCollaborativeAI
askedaboutthecriticalattributesandchallengesofbusinessmodelsrelatedtotheircollaborativeFedMLprojectfollowedbyareflectionandlivelydiscussion.Throughthis,wewereabletoidentifyfurtherchallengesbasedontheirreal-worldexperiences.TheemergingdatawascodedbytworesearchersandincorporatedintotheresultsoftheSLR.Inthefollowing,everyinsightwhichwasgainedthroughthein-depthfocusgroupinterviewisreferencedviatheindex(FG).
3.3Semi-StructuredExpertInterviews
Eventhoughthefocusgrouphelpedexplorethesocio-technicalchallengesofFedMLcollaborations,theinsightsmightbehighlybiasedduetothehomogeneousdemographicsoftheparticipants.Togainamoregenericallyapplicableunderstanding,weaimedtodrawfromtheexperiencesoffurtherexpertsworkinginthefieldofappliedAI,especiallywithexperienceinFedMLprojects.Fortheseexpertinterviews,wedrawfromtheGroundedTheorymethodology(Hodaetal.,2011).Hence,weconfrontedtheintervieweeswithasetofpre-definedquestionsandrecordedaswellastranscribedtheinterviews.Wesuccessivelyconductedandcomparedtheresultsofeachinterview.After5interviewstheoreticalsaturationwasreachedandconsequently,theinterviewstudywasclosed.Thesetofintervieweesrepresentedamorediversesetofexpertsfromdifferentorganizationsanddomains.Table1presentsacodifiedtableofoursample.WedevelopedaninterviewguidebasedontheresearchquestionsandfindingsfromtheSLRaswellasthefocusgroupinterviewincludingopenquestionsaboutpotentiallymissingattributes,challenges,andfurtherinsights.Theseinterviewsallowedustogomorein-depthandidentifymissingaspectsandgainmoredetailed,in-depthindividualunderstandingtodeveloptheguidelinequestionnairefurther.
Theintervieweesallowedthefindingstobepublishedinananonymizedmannerbutdidnotagreetodisclosethefulltranscriptions.Therefore,thefulltranscriptsarenotincluded.Thefindingsfromthesemi-structuredinterviewsarereferencedinthefollowingwiththeparticipantIDaslistedintable2.
ParticipantID
Position
Organization
Duration
E1
AIBusinessDeveloper
LargeGermansoftwareenterprise
52
E2
AIProjectLead
LargeGermansoftwareenterprise
44
E3
PrincipalDataScientist
LargeGermansoftwareenterprise
45
E4
AppliedResearcher
Medium-sizedinnovationcompany
35
E5
ScientificResearcher
Researchinstituteforsoftwaredevelopment
59
Table2.InterviewStudyParticipants
4Socio-TechnicalChallengesofInterorganizationalFederatedMachineLearning
Applyingcollaborativemodelscanbechallengingindifferentdomains,especiallywhenseveralcompaniesareinvolved.Whenthebusinessisoperationalized,complexityincreasessignificantlybecausethegeneralbusinessmodelideaneedstobalancetheinterestsofallparticipants(Paunaetal.,2021).Collaborationswithmultipleparticipantsarecomplexinnature,andcollaborationfailureratesarehigh,leavingmuchrevenueatriskandunrealizedvalue(ManandLuvison,2019).Moreover,aligningthebusinessmodelwithoperationalandgovernance-relatedaspectsissuggestedtohelppositiontheorganizationtodeliveronitsvaluepropositionforasuccessfulimplementationofthebusinessmodel(Curtis,2021).Hence,earlyidentificationofthecollaborationchallengesiscriticalforthesuccessfulcreationofthecollaborativebusinessmodel.
Tobetterunderstandwhichspecificcollaborationchallengesshouldbeconsidered,wefirstinvestigatethechallengesofprevailinginter-organizationalbusinessmodelsand,secondly,whichFedML-related
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway7
Socio-TechnicalChallengesofCollaborativeAI
socio-technicalaspectsarecriticalforsuccessfulimplementationandthereforeshouldbeconsideredinacorrespondingcollaborativebusinessmodel.
4.1ChallengesofCollaborativeBusinessModels
Jointworkofdifferentorganizationsiscomplex,andorganizationsshouldbepreparedtofacechallengesarisingfromcooperation.Inthefollowing,wegiveanoverviewofthesystematizedresultsoftheSLRonthechallengesofinter-organizationalbusinessmodels.WepresentourkeyresultsinastructuredmannerbasedontheworkofDiirrandCappelli(2018).
DiirrandCappelli(2018)dividethechallengesofinter-organizationalcollaborationsintothreecategories:external,internal,andnetwork-relatedchallenges.Externalandinternalchallengesaredetachedfrominter-organizationalcollaboration.Externalchallengesrelatetoenvironmentalchallenges,e.g.,naturalevents,andinternalchallengesarisefrominsidetheproject,forexample,infrastructureproblems.Network-relatedchallengesfocusontherelationshipsandinteractionsbetweenorganizationsandcanbefurthersubdividedintomanagement,businessprocess,andcollaborationchallenges(DiirrandCappelli,2018).BasedonthesecategoriesinconjunctionwiththefindingsoftheSLRwederivedthefollowingnetwork-relatedchallengesaslistedintable3.
Category
Description
Aspects
Management
Challenges
the
Includehoworganizationscreateandestablishcollaboration,compromisingthefollowingaspects
Selectionofsuitableparticipatingactors(Paunaetal.,2021).
Changemanagementfordynamiccollaboration(Caridàetal.,2015;Redlichetal.,2014).
Cooperationestablishment:lackofcommitmentfromparticipatingorganizations(ProulxandGardoni,2020);buildingandexpandingtrustbetweentheparties(Blejaetal.,2020;DiirrandCappelli,2018;Redlichetal.,2014).
Decision-makingandcoordinationslownesswithinthecollaboration(Blejaetal.,2020;Caridàetal.,2015;DiirrandCappelli,2018;Redlichetal.,2014).
Communicationwithgovernmentauthoritiesrequiresadifferentapproachduetomultipleparties'interactions(Paunaetal.,2021).
BusinessProcessChallenges
Addresseswayorganization’sstructureanddesignpartnershipoperations
Definitionofamutualbusinessgoalofthecollaboration(DiirrandCappelli,2018).
Co-CreationManagementfordeliveringthevalueproposition:
•Distributionoffinancials,investment(Paunaetal.,2021),costs,andrevenues(Blejaetal.,2020;Caridàetal.,2015;Paunaetal.,2021).
•Riskallocation(DiirrandCappelli,2018).
•Ownershipstructure(DiirrandCappelli,2018;Kujalaetal.,2020).
•Responsibilityassignment(DiirrandCappelli,2018).
•Alignonqualityofco-creationproduct(DiirrandCappelli,2018).
•IntellectualpropertyManagement(EppingerandKamprath,2011).
Thirty-firstEuropeanConferenceonInformationSystems(ECIS2023),Kristiansand,Norway8
Socio-TechnicalChallengesofCollaborativeAI
Slowerbusinessstrategyandprocessidentification(Berkersetal.,2020;DiirrandCappelli,2018).
Alignmentofthestructuresofheterogeneousorganizationswithdistinctcharacteristics(DiirrandCappelli,2018).
Infrastructureformanagingrelationshipsbetweenmultiplecollaborationactors(Caridàetal.,2015;DiirrandCappelli,2018).
Collaboration
Challenges
Describe
how
organizationsjointlyworktogethertoachievethegoalofcollaboration
Agreementoncollaborationandalignmentwiththeorganizations'ownobjectives(Blejaetal.,2020;CostaandDaCunha,2015;DiirrandCappelli,2018;ManandLuvison,2019;Paunaetal.,2021).
Alignmentofdifferentorganizations:cultureandcommonethics(Blejaetal.,2020;DiirrandCappelli,2018;Kujalaetal.,2020).
Riskofopportunismofparticipantsandconsequencesofaction(DiirrandCappelli,2018).
Table3.OverviewofChallengesforInter-OrganizationalCollaborations
ThisoverviewofchallengesisaconsolidationoftheselectedacademicsourcesoftheSLRandaimstoprovideageneralunderstandingofthedifficultiesofsuchcollaborations.Itisimportanttonotethatnaturally,thislistmightnotbecomprehensiveandthatcertain,potentiallyimportant,aspectsmightbemissing.
4.2AspectsofInterorganizationalFedMLBusinessModels
Toprovideinitialguidanceinthecreatio
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外墙保温一体板材料选择方案
- 党建品牌在文化产业的应用方案
- 2024年儿童床安全性能优化合同
- 信息必刷卷03-2023年高考地理考前信息必刷卷(湖北专用)(解析版)
- 文化场所垃圾分类与减量执行方案
- 股权投资管理合同三篇
- 2024年多媒体LED显示屏购销合同
- 2024年体育赛事赞助与广告植入合同
- 2024年调节球阀项目评估分析报告
- 2024年航天器及其运载工具、零件项目成效分析报告
- 2024 团校考试入团考试题库(含答案)
- 三重一大培训课件
- 大一新生个人生涯发展报告
- 物流公司消防安全知识讲座
- 车辆托运合同
- 2023土的分散性判别试验规程
- 牧原招聘测评试题
- 29.4常见肿瘤标志物讲解
- 学堂课程在线美好生活“油”此而来:油科学概论(暨大)课后作业答案
- 铸牢中华民族共同体意识主题班会教案
- 《仪器分析技术》课程标准
评论
0/150
提交评论