版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章应变状态理论第1页,共31页,2023年,2月20日,星期三
外力(或温度变化)作用下,物体内部各部分之间要产生相对运动。物体的这种运动形态,称为变形。本章任务有两个:1、分析一点的应变状态;2、建立几何方程和应变协调方程。第2页,共31页,2023年,2月20日,星期三3.1位移分量与应变分量-几何方程3.2一点的形变状态形变张量3.3转轴时应变分量的变换3.4主形变形变张量不变量3.5体应变应变协调方程第3页,共31页,2023年,2月20日,星期三3.1位移分量与应变分量
-几何方程第4页,共31页,2023年,2月20日,星期三在外力作用下,物体整体发生位置和形状的变化,一般说来各点的位移不同。第5页,共31页,2023年,2月20日,星期三如果各点的位移完全相同,物体发生刚体平移;如果各点的位移不同,但各点间的相对距离保持不变,物体发生刚体转动等刚体移动。第6页,共31页,2023年,2月20日,星期三如果各点(或部分点)间的相对距离发生变化,则物体发生了变形。这种变形一方面表现在微线段长度的变化,称为线应变;一方面表现在微线段间夹角的变化,称为切应变。第7页,共31页,2023年,2月20日,星期三我们从物体中取出x方向上长dx的线段PA,变形后为P‘A’,P‘点的位移为(u,v),A’点x方向的位移为y方向上的位移为dxdx第8页,共31页,2023年,2月20日,星期三PA的正应变在小变形时是由x方向的位移所引起的,因此PA正应变为PA的转角为dxdxα第9页,共31页,2023年,2月20日,星期三我们从物体中取出y方向上长dy的线段PB,变形后为P'B',B'点y方向的位移为x方向上的位移为PB的正应变在小变形时是由y方向的位移所引起的,因此PB正应变为:PB的转角为:第10页,共31页,2023年,2月20日,星期三线段PA的转角是线段PB的转角是于是,直角APB的改变量为A有时用张量分量PAB第11页,共31页,2023年,2月20日,星期三这样,平面上一点的变形我们用该点x方向上的正应变、y方向上的正应变和xy方向构成的直角的变化来描述,称为应变分量,也就是所说的几何方程。从几何方程可见,当物体的位移分量完全确定时,形变分量即完全确定。思考题:当形变分量完全确定时,位移分量是否能完全确定。第12页,共31页,2023年,2月20日,星期三同样,空间一点的变形我们用该点x、y、z方向上的正应变和xy、yz、zx方向构成的直角的变化-切应变来描述。张量形式为第13页,共31页,2023年,2月20日,星期三空间的应变分量共九个分量,是一个对称张量,和应力张量一样,它们遵从坐标变换规则,同样存在着三个互相垂直的主方向,对应的主应变值是该张量的特征值。这些互相垂直的主方向构成的直角在该应变张量的变形时,角度不变,由主平面组成的单元体,由正方体变为直角长方体。在主方向构成的坐标系中,张量分量构成对角阵,切应变分量为零。第14页,共31页,2023年,2月20日,星期三物体除形变外,还存在转动、刚体位移:(a)均匀形变:u、v、w是线性函数,称为均匀形变;(b)刚体位移:“形变为零”时的位移,即是“与形变无关的位移”;(c)纯形变:形变分量不等于零,而转动分量等于零。第15页,共31页,2023年,2月20日,星期三3.2一点的形变状态,形变张量第16页,共31页,2023年,2月20日,星期三
相对位移张量6个应变分量是通过位移分量的9个一阶偏导,即:引入其中为那勃勒算子,是位移矢量,不难
算得的3个分量为:第17页,共31页,2023年,2月20日,星期三这里的称为转动矢量,而,,称为转动分量。由此,可将相对位移张量分解为两个张量:=+第18页,共31页,2023年,2月20日,星期三如物体中一点M的形变分量为
则相对位移张量(非对称)可分解为应变张量与转动张量。
上式,等号右边第一项为对称张量,表示微元体的纯变形,称为应变张量,第二项为反对称张量,它表示微元体的刚体转动,即表示物体变形后微元体的方位变化。第19页,共31页,2023年,2月20日,星期三
3.3转轴时应变分量的变换
x
y
z
设在坐标轴oxyz下,物体内某一点的6个应变分量为。现使坐标轴旋转一个角度,新老坐标的关系为:
其中表示新坐标轴对老坐标轴的方向余弦。
第20页,共31页,2023年,2月20日,星期三位移矢量在新坐标系中的3个分量分别为:
其中为3个新坐标轴的单位矢量。利用方向导数公式:第21页,共31页,2023年,2月20日,星期三同理,可求其它五个应变分量。经整理可得:
于是新坐标系中的应变分量为第22页,共31页,2023年,2月20日,星期三同理,可以给出某一点沿任意方向微分线段的伸长率
张量式表示为第23页,共31页,2023年,2月20日,星期三3.4主形变,形变张量不变量第24页,共31页,2023年,2月20日,星期三与应力状态相类似,把切应变等于零的面称为主平面。主平面的法线方向称为主应变方向,主平面上的正应变就是主应变。同样存在第一、第二和第三应变不变量。第25页,共31页,2023年,2月20日,星期三3.5体应变应变协调方程第26页,共31页,2023年,2月20日,星期三体应变:物体变形后单位体积的改变。
如给定的六面体,其微分体积为其变形后的体积为:则体应变为第27页,共31页,2023年,2月20日,星期三又可表示为:对于某一初始连续的物体,按某一应变状态变形后必须保持其整体性和连续性,即物体既不开裂,又不重叠,此时所给定的应变状态是协调的,否则是不协调的。第28页,共31页,2023年,2月20日,星期三
从数学的观点说,要求位移函数在其定义域内为单值连续函数。如出现了开裂,位移函数就会出现间断;出现了重叠,位移函数就不可能为单值。因此,为保持物体变形后的连续性,各应变分量之间,必须有一定的关系。第29页,共31页,2023年,2月20日,星期三由前面的讨论可知,在小变形情况下的六个应变分量是通过六个几何方程与三个位移函数相联系的。如已知位移分量,极易通过几何方程求得各个应变分量。但反过来,如给定一组应变,几何方程是关于未知位移函数的微分方程组,其中包含了六个方程,但仅三个未知函数。由于方程的个数超过了未知数的个数,如任意给定,则几何方程不一定有解,仅当,满足某种可积条件,或称为应变协调关系时,才能由几何几何方程积分得到单值连续的位移场。第30页,共31页,2023年,2月20日,星期三εij应变张量各分量满足的应变协调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人事个人工作计划5篇
- 防溺水的讲话稿8篇
- 水电工年度工作总结
- 2024年国开电大【本科】《个人理财》形考任务1234(含答案)
- DB31-T 1396-2023 风机系统运行能效评估技术规范
- 兰亭集序、滕王阁序、赤壁赋比较阅读
- 金融事业说明会
- 公路土工试验规程(JTG-E40-2007)
- 《矛盾定义新课教学》课件
- 《用电检查与稽查》课件
- 搬运装卸服务外包搬运装卸实施方案
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 医院手术室地震应急预案
- 上肢内固定取出的手术配合
- 宝丰县永顺铝土有限公司铝土矿、高铝粘土矿、水泥灰岩矿矿山地质环境保护与土地复垦方案
- 2024年合肥高新公共资源交易有限公司招聘笔试参考题库附带答案详解
- 英才计划面试常见问题及解答
- (高清版)TDT 1058-2020 第三次全国国土调查县级数据库建设技术规范
- (高清版)TDT 1075-2023 光伏发电站工程项目用地控制指标
- 农业经济学重点整理-农业经济学重点整理
- 心理疗愈创业版
评论
0/150
提交评论