版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合A={x|x>0},B={x|x2-5x-14<0},则A.{x|0<x<5} B.{x|2<x<7}C.{x|2<x<5} D.{x|0<x<7}2.若复数满足,其中为虚数单位,则A. B. C. D.3.设函数是定义在上的偶函数,且,若,则A. B. C. D.4.过双曲线的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率是()A. B. C. D.5.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?()A.5局3胜制 B.7局4胜制 C.都一样 D.说不清楚6.已知,且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设集合,,则A. B. C. D.8.已知集合,则集合的子集个数为()A.3 B.4 C.7 D.89.若为两条异面直线外的任意一点,则()A.过点有且仅有一条直线与都平行B.过点有且仅有一条直线与都垂直C.过点有且仅有一条直线与都相交D.过点有且仅有一条直线与都异面10.设曲线及直线所围成的封闭图形为区域,不等式组所确定的区域为,在区域内随机取一点,则该点恰好在区域内的概率为()A. B. C. D.11.已知函数的图像是一条连续不断的曲线,若,,那么下列四个命题中①必存在,使得;②必存在,使得;③必存在,使得;④必存在,使得.真命题的个数是()A.个 B.个 C.个 D.个12.复数的虚部为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设集合,,则________14.2018年4月4日,中国诗词大会第三季总决赛如期举行,依据规则,本场比赛共有甲、乙、丙、丁、戊五位选手有机会问鼎冠军,某家庭中三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:爸爸:冠军是甲或丙;妈妈:冠军一定不是乙和丙;孩子:冠军是丁或戊.比赛结束后发现:三人中只有一个人的猜测是对的,那么冠军是______.15.已知函数,给出以下结论:①曲线在点处的切线方程为;②在曲线上任一点处的切线中有且只有两条与轴平行;③若方程恰有一个实数根,则;④若方程恰有两个不同实数根,则或.其中所有正确结论的序号为__________.16.已知甲、乙、丙3名运动员击中目标的概率分别为,,,若他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水平.某市的体育部门对某小区的4000人进行了“运动参与度”统计评分(满分100分),得到了如下的频率分布直方图:(1)求这4000人的“运动参与度”的平均得分(同一组中数据用该组区间中点作代表);(2)由直方图可认为这4000人的“运动参与度”的得分服从正态分布,其中,分别取平均得分和方差,那么选取的4000人中“运动参与度”得分超过84.81分(含84.81分)的人数估计有多少人?(3)如果用这4000人得分的情况来估计全市所有人的得分情况,现从全市随机抽取4人,记“运动参与度”的得分不超过84.81分的人数为,求.(精确到0.001)附:①,;②,则,;③.18.(12分)设函数.(1)当时,求的极值;(2)当时,证明:.19.(12分)已知函数,是偶函数.(1)求的值;(2)解不等式.20.(12分)设点是抛物线上异于原点的一点,过点作斜率为、的两条直线分别交于、两点(、、三点互不相同).(1)已知点,求的最小值;(2)若,直线的斜率是,求的值;(3)若,当时,点的纵坐标的取值范围.21.(12分)已知的展开式中,末三项的二项式系数的和等于121;(1)求n的值;(2)求展开式中系数最大的项;22.(10分)的内角A,B,C的对边分别为a,b,c.已知.(1)求角C;(2)若,,求的周长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:由B={x|x2-5x-14<0}={x|-2<x<7},所以考点:集合的运算.2、B【解析】
由复数的除法运算法则化简,由此可得到复数【详解】由题可得;;故答案选B【点睛】本题主要考查复数的除法运算法则,属于基础题。3、D【解析】
根据函数的奇偶性求出和的值即可得到结论.【详解】是定义在上的偶函数,,,即,则,故选D.【点睛】本题主要考查函数值的计算,以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题.4、B【解析】
在中,为线段的中点,又,得到等腰三角形,利用边的关系得到离心率.【详解】在中,为线段的中点,又,则为等腰直角三角形.故答案选B【点睛】本题考查了双曲线的离心率,属于常考题型.5、A【解析】
分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案.【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:,显然采用5局3胜制对乙更有利,故选A.【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.6、C【解析】分析:已知,解出a,b的值,再根据充分条件和必要条件的定义进行求解.详解:a>0,b>0且a≠1,若logab>0,a>1,b>1或0<a<1,0<b<1,∴(a-1)(b-1)>0;若(a-1)(b-1)>0,则或则a>1,b>1或0<a<1,0<b<1,∴logab>0,∴“logab>0”是“(a-1)(b-1)>0”的充分必要条件.故选C.点睛:在判断充分、必要条件时需要注意:(1)确定条件是什么、结论是什么;(2)尝试从条件推导结论,从结论推导条件;(3)确定条件是结论的什么条件.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题.7、C【解析】由,得:∴;∵,∴∴故选C8、D【解析】分析:先求出集合B中的元素,从而求出其子集的个数.详解:由题意可知,集合B={z|z=x+y,x∈A,y∈A}={0,1,2},则B的子集个数为:23=8个,故选D.点睛:本题考察了集合的子集个数问题,若集合有n个元素,其子集有2n个,真子集有2n-1个,非空真子集有2n-2个.9、B【解析】解:因为若点是两条异面直线外的任意一点,则过点有且仅有一条直线与都垂直,选B10、C【解析】分析:求出两个区域的面积,由几何概型概率公式计算可得.详解:由题意,,∴,故选C.点睛:以面积为测度的几何概型问题是几何概型的主要问题,而积分的重要作用正是计算曲边梯形的面积,这类问题巧妙且自然地将新课标新增内容——几何概型与定积分结合在一起,是近几年各地高考及模拟中的热点题型.预计对此类问题的考查会加大力度.11、A【解析】分析:函数是连续的,故在闭区间上,的值域也是连续的,令,根据不等式的性质可得①正确;利用特值法可得②③④错误,从而可得结果.详解:函数是连续的,故在闭区间上,的值域也是连续的,令,对于①,,故①正确.对于②,若,则,无意义,故②错误.对于③,时,不存在,使得,故③错误.对于④,可能为,则无意义,故④错误,故选A.点睛:本题主要通过对多个命题真假的判断,主要综合考查函不等式的性质及连续函数的性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,利用定理、公理、结论以及特值判断,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.12、C【解析】
利用复数除法运算求得,根据虚部定义得到结果.【详解】的虚部为:本题正确选项:【点睛】本题考查复数虚部的求解,涉及到复数的除法运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求,再求.【详解】,故答案为:【点睛】本题考查集合的运算,属于简单题型.14、丙【解析】分析:利用反推法,逐一排除即可.详解:如果甲是冠军,则爸爸与妈妈均猜对,不符合;如果乙是冠军,则三人均未猜对,不符合;如果丙是冠军,则只有爸爸猜对,符合;如果丁是冠军,则妈妈与孩子均猜对,不符合;如果戊是冠军,则妈妈与孩子均猜对,不符合;故答案为丙点睛:本题考查推理的应用,解题时要认真审题,注意统筹考虑、全面分析,属于基础题.15、②④【解析】分析:对函数进行求导,通过导数研究函数的性质从而得到答案.详解:,①则曲线在点处的切线方程为即,故①不正确;②令或,即在曲线上任一点处的切线中有且只有两条与轴平行;正确;③由②知函数在上单调递减,在上单调递增,当函数的极小值极大值故若方程恰有一个实数根,则或,③不正确;④若方程恰有两个不同实数根,则或.正确点睛:本题考查导数的应用以及数形结合思想,是一道中档题.16、【解析】
设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:,由此能求出结果.【详解】解:设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:.故答案为.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)平均成绩为70.5分(2)人(3)【解析】
(1)先计算中间值和对应概率,相乘再相加得到答案.(2)先计算服从正态分布,根据公式得到答案.(3)先计算概率,再利用二项分布公式得到答案.【详解】(1)由题意知:中间值455565758595概率0.10.150.20.30.150.1∴,∴这4000人“运动参与度”得分的平均成绩为70.5分.(2)依题意服从正态分布,其中,,,∴服从正态分布,而,∴.∴这4000人中“运动参与度”得分超过84.81分的人数估计为人人.(3)全市所有人的“运动参与度”得分不超过84.81分的概率.而,∴.【点睛】本题考查了平均值,正态分布,二项分布,概率.综合性较强,意在考查学生解决问题的能力.18、(1)当,取得极小值;当时,取得极大值;(2)见解析.【解析】【试题分析】(1)当时,利用导数写出函数的单调区间,进而求得函数的极值.(2)当时,化简原不等式得,分别利用导数求得左边对应函数的最小值,和右边对应函数的最大值,最小值大于最大值,即可证明原不等式成立.【试题解析】(1)当时,,,当时,,在上单调递减;当时,,在上单调递增;当时,,在上单调递减.所以,当,取得极小值;当时,取得极大值.(2)证明:当时,,,所以不等式可变为.要证明上述不等式成立,即证明.设,则,令,得,在上,,是减函数;在上,,是增函数.所以.令,则,在上,,是增函数;在上,,是减函数,所以,所以,即,即,由此可知.【点睛】本小题主要考查函数导数与极值的求法.考查利用导数证明不等式成立的问题.求函数极值的基本步骤是:首先求函数的定义域,其次对函数求导,求导后一般需要对导函数进行通分和因式分解,然后求得导函数的零点,即原函数的极值点,结合图象判断函数的单调区间,并得出是最大值还是最小值.19、(1)(2)【解析】
(1)由函数是偶函数,可知,根据对数的运算,即可求解;(2)由题,根据对数的运算性质,得,令,转化为,利用一元二次不等式的解法和指数与对数的运算,即可求解.【详解】(1)由函数是偶函数,可知,所以恒成立,化简得,即,解得.(2)由题,即,整理得,令得,解得或者,从而或,解得或,原不等式解集为.【点睛】本题主要考查了函数的奇偶性的应用,指数函数、对数函数的运算性质,以及一元二次不等式的解法的应用,着重考查了推理与运算能力,属于基础题.20、(1)(2)(3)或【解析】
(1)因为,设,则,由两点间距离公式可求得:,即可得出的最小值;(2)因为,所以,设的直线方程:,将与联立方程组,消掉,通过韦达定理,将点坐标用表示同理可得到坐标.即可求得直线的斜率是,进而求得答案;(3)因为,故.、两点抛物线上,可得,,即可求得向量和.由,可得到关于和方程,将方程可以看作关于的一元二次方程,因为且,,故此方程有实根,,即可求得点的纵坐标的取值范围.【详解】(1)在,设,则由两点间距离公式可求得:令,(当即取等号)的最小值.(2),,故则的直线方程:将与联立方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年小学公用经费管理制度模版(五篇)
- 2024年幼儿园个人工作总结参考(二篇)
- 2024年大班教育教学工作计划样本(二篇)
- 2024年委托经营合同例文(二篇)
- 2024年商品房屋租赁合同参考范文(三篇)
- 2024年学校公共卫生相关管理制度例文(二篇)
- 2024年学前班数学教学工作计划范本(二篇)
- 2024年小学三年级第二学期班主任工作计划(三篇)
- 2024年学校会计工作计划样本(五篇)
- 2024年工程部员工的岗位职责范本(三篇)
- 2024年青海三新农电有限责任公司招聘笔试参考题库含答案解析
- 干细胞商业计划书
- 三 《联系生活实际 弘扬工匠精神》(教学设计)-【中职专用】高二语文精讲课堂(高教版2023·职业模块)
- 直饮水设计方案
- 班级公约大家定
- 腹部损伤课件
- 北师大版数学三年级上册《植树》说课稿
- 浅谈2022版新课标第三学段表达与交流
- 三明医改绩效工资方案(5篇)
- 混凝土冬季施工热工计算表
- 江西省吉安市2023-2024学年七年级上学期期中数学试题
评论
0/150
提交评论