版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年河南省洛阳市汝阳县实验初中中考数学模拟预测题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣ B. C.﹣5 D.52.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A.5 B.9 C.15 D.223.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A. B. C. D.4.如图,已知是的角平分线,是的垂直平分线,,,则的长为()A.6 B.5 C.4 D.5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.6.估计的运算结果应在哪个两个连续自然数之间()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣47.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为()A.6 B.8 C.10 D.128.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是()A. B. C.- D.9.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A. B.2 C. D.10.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣8二、填空题(共7小题,每小题3分,满分21分)11.阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=﹣1,那么(1+i)•(1﹣i)的平方根是_____.12.正多边形的一个外角是60°,边长是2,则这个正多边形的面积为___________.13.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.14.如图,反比例函数y=(x>0)的图象与矩形AOBC的两边AC,BC边相交于E,F,已知OA=3,OB=4,△ECF的面积为,则k的值为_____.15.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度.16.对于一元二次方程,根的判别式中的表示的数是__________.17.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.三、解答题(共7小题,满分69分)18.(10分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.(1)求证:△ADE~△ABC;(2)当AC=8,BC=6时,求DE的长.19.(5分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=l.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=4,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.20.(8分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?21.(10分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.22.(10分)如图,热气球的探测器显示,从热气球A看一栋髙楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,求这栋高楼BC的高度.23.(12分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若△PAC为直角三角形,直接写出此时点P的坐标.24.(14分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.(1)①若点在直线上,则点的“理想值”等于_______;②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(﹣2)•===a-b,当a-b=5时,原式=5,故选D.2、B【解析】
条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.3、A【解析】试题解析:∵一根圆柱形的空心钢管任意放置,∴不管钢管怎么放置,它的三视图始终是,,,主视图是它们中一个,∴主视图不可能是.故选A.4、D【解析】
根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.5、C【解析】
结合图形,逐项进行分析即可.【详解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②,故选C.【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.6、C【解析】根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.故选C.点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.7、B【解析】
根据勾股定理得到OA==5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.【详解】∵点A的坐标为(﹣3,﹣4),∴OA==5,∵四边形AOCB是菱形,∴AB=OA=5,AB∥x轴,∴B(﹣8,﹣4),∵点E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.8、A【解析】
先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.9、C【解析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.考点:圆周角定理;锐角三角函数的定义.10、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.00000071的小数点向或移动7位得到7.1,所以0.00000071用科学记数法表示为7.1×10﹣7,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(共7小题,每小题3分,满分21分)11、2【解析】
根据平方根的定义进行计算即可.【详解】.解:∵i2=﹣1,∴(1+i)•(1﹣i)=1﹣i2=2,∴(1+i)•(1﹣i)的平方根是±,故答案为±.【点睛】本题考查平方根以及实数的运算,解题关键掌握平方根的定义.12、6【解析】
多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解.【详解】正多边形的边数是:360°÷60°=6.正六边形的边长为2cm,由于正六边形可分成六个全等的等边三角形,且等边三角形的边长与正六边形的边长相等,所以正六边形的面积.故答案是:.【点睛】本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.13、【解析】【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是,故答案为:.【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.14、1【解析】
设E(,3),F(1,),由题意(1-)(3-)=,求出k即可;【详解】∵四边形OACB是矩形,
∴OA=BC=3,AC=OB=1,
设E(,3),F(1,),
由题意(1-)(3-)=,
整理得:k2-21k+80=0,
解得k=1或20,
k=20时,F点坐标(1,5),不符合题意,
∴k=1
故答案为1.【点睛】本题考查了反比例函数系数k的几何意义,解题的关键是会利用参数构建方程解决问题.15、130【解析】分析:n边形的内角和是因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1.详解:设多边形的边数为x,由题意有解得因而多边形的边数是18,则这一内角为故答案为点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.16、-5【解析】
分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.【详解】解:表示一元二次方程的一次项系数.【点睛】此题考查根的判别式,在解一元二次方程时程根的判别式△=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值.a代表二次项系数,b代表一次项系数,c是常数项.17、4或8【解析】
由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4。【详解】设AA′=x,AC与A′B′相交于点E,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=45∘,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD−AA′=12−x,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x−12x+32=0,解得x=4,x=8,即移动的距离AA′等4或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.三、解答题(共7小题,满分69分)18、(1)见解析;(2).【解析】
(1)根据两角对应相等,两三角形相似即可判定;(2)利用相似三角形的性质即可解决问题.【详解】(1)∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB.(2)在Rt△ABC中,∵AC=8,BC=6,∴AB1.∵DE垂直平分AB,∴AE=EB=2.∵△AED∽△ACB,∴,∴,∴DE.【点睛】本题考查了相似三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.19、(1)①(2,0),(1,),(﹣1,);②y=x;③y=x,y=﹣x+;(2)①半径为4,M(,);②﹣1<r<+1.【解析】
(1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题.【详解】(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=,∴A(2,0),B(1,),C(﹣1,),故答案为(2,0),(1,),(﹣1,);②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴=,∴,∴y=x;③如图2﹣3中,作QM∥OA交OD于M,则有,∴,∴y=﹣x+,故答案为y=x,y=﹣x+;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=4,∴OF=FA=2,∴FM=2,OM=2FM=4,∵MN∥y轴,∴MN⊥OM,∴MN=,ON=2MN=,∴M(,);②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等边三角形,∴MN=,当FN=1时,MF=﹣1,当EN=1时,ME=+1,观察图象可知当⊙M的半径r的取值范围为﹣1<r<+1.故答案为:﹣1<r<+1.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.20、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.【解析】
(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【详解】⑴把C(6,-1)代入,得.则反比例函数的解析式为,把代入,得,∴点D的坐标为(-2,3).⑵将C(6,-1)、D(-2,3)代入,得,解得.∴一次函数的解析式为,∴点B的坐标为(0,2),点A的坐标为(4,0).∴,在在中,∴.⑶根据函数图象可知,当或时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.21、(1)520千米;(2)300千米/时.【解析】试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程×1.3得出答案;(2)首先设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时,根据题意列出分式方程求出未知数x的值.试题解析:(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)(2)设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时依题意有:=3解得:x=120经检验:x=120分式方程的解且符合题意高铁平均速度:2.5×120=300千米/时答:高铁平均速度为2.5×120=300千米/时.考点:分式方程的应用.22、这栋高楼的高度是【解析】
过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.【详解】过点A作AD⊥BC于点D,依题意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:这栋高楼的高度是.【点睛】本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.23、(1)(4,6);y=1x1﹣8x+6(1);(3)点P的坐标为(3,5)或().【解析】
(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.【详解】解:(1)∵B(4,m)在直线y=x+1上,∴m=4+1=6,∴B(4,6),故答案为(4,6);∵A(,),B(4,6)在抛物线y=ax1+bx+6上,∴,解得,∴抛物线的解析式为y=1x1﹣8x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3①又抛物线的解析式为:y=1x1﹣8x+6②联立①②式,解得:或(与点A重合,舍去),∴C(3,0),即点C、M点重合.当x=3时,y=x+1=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴抛物线的对称轴为直线x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国童话课件教学课件
- 眉毛设计课件教学课件
- 2024大型港口码头排水合同
- 2024年度技术转让合同:技术资料交付与技术支持期限
- 2024定制家具合同范本
- 2024义齿加工商与牙科诊所之间的定制金属义齿合同
- 2024岗位聘用合同不续签岗位聘用合同
- 2024年度餐厅食材供应商采购合同
- 骨科课件介绍教学课件
- 2024年婚礼车辆租赁特别合同
- 大学生职业生涯规划测绘地理信息技术专业
- 小学新教材解读培训
- MOOC 全球化与中国文化-西南交通大学 中国大学慕课答案
- 摊位布局规划方案
- 注塑工艺损耗率
- 钢结构漏雨维修方案
- (含附件)ktv承包协议书模板-2024
- (高清版)DZT 0289-2015 区域生态地球化学评价规范
- 2024年强基计划解读 课件-2024届高三下学期主题班会
- 我国区域经济发展战略(二)
- 合肥新站集贸市场规划方案
评论
0/150
提交评论