![福建省南安市柳城中学2022-2023学年数学高二下期末调研模拟试题含解析_第1页](http://file4.renrendoc.com/view/ddf54bbe93a3907fe8e51fa8d816f2d0/ddf54bbe93a3907fe8e51fa8d816f2d01.gif)
![福建省南安市柳城中学2022-2023学年数学高二下期末调研模拟试题含解析_第2页](http://file4.renrendoc.com/view/ddf54bbe93a3907fe8e51fa8d816f2d0/ddf54bbe93a3907fe8e51fa8d816f2d02.gif)
![福建省南安市柳城中学2022-2023学年数学高二下期末调研模拟试题含解析_第3页](http://file4.renrendoc.com/view/ddf54bbe93a3907fe8e51fa8d816f2d0/ddf54bbe93a3907fe8e51fa8d816f2d03.gif)
![福建省南安市柳城中学2022-2023学年数学高二下期末调研模拟试题含解析_第4页](http://file4.renrendoc.com/view/ddf54bbe93a3907fe8e51fa8d816f2d0/ddf54bbe93a3907fe8e51fa8d816f2d04.gif)
![福建省南安市柳城中学2022-2023学年数学高二下期末调研模拟试题含解析_第5页](http://file4.renrendoc.com/view/ddf54bbe93a3907fe8e51fa8d816f2d0/ddf54bbe93a3907fe8e51fa8d816f2d05.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,是奇函数,则()A.在上单调递减 B.在上单调递减C.在上单调递增 D.在上单调递增2.已知,且.则展开式中的系数为()A.12 B.-12 C.4 D.-43.将7个座位连成一排,安排4个人就坐,恰有两个空位相邻的不同坐法有()A.240 B.480 C.720 D.9604.下列函数中,与函数的奇偶性相同,且在上单调性也相同的是()A. B. C. D.5.已知,,若包含于,则实数的取值范围是()A. B. C. D.6.设,若是的最小值,则的取值范围是()A. B. C. D.7.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A.1 B. C. D.8.下列说法正确的是()A.命题“若,则”的否命题为“若,则”B.命题“,”的否定是“,”C.样本的相关系数r,越接近于1,线性相关程度越小D.命题“若,则”的逆否命题为真命题9.在体育选修课排球模块基本功发球测试中,计分规则如下满分为10分:①每人可发球7次,每成功一次记1分;②若连续两次发球成功加分,连续三次发球成功加1分,连续四次发球成功加分,以此类推,,连续七次发球成功加3分假设某同学每次发球成功的概率为,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是(
)A. B. C. D.10.展开式中的系数为()A. B. C. D.6011.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A. B. C. D.12.若向量,,则向量与()A.相交 B.垂直 C.平行 D.以上都不对二、填空题:本题共4小题,每小题5分,共20分。13.中,,则边上中线的长为_____.14.双曲线:的左右焦点分别为,过斜率为的直线与双曲线的左右两支分别交于点、,若,则该双曲线的离心率是_________.15.小明玩填数游戏:将1,2,3,4四个数填到的表格中,要求每一行每一列都无重复数字。小明刚填了一格就走开了(如右图所示),剩下的表格由爸爸完成,则爸爸共有_______种不同的填法.(结果用数字作答)116.已知函数若关于的方程恰有4个不同的实数解,则的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某射击运动员每次击中目标的概率是,在某次训练中,他只有4发子弹,并向某一目标射击.(1)若4发子弹全打光,求他击中目标次数的数学期望;(2)若他击中目标或子弹打光就停止射击,求消耗的子弹数的分布列.18.(12分)如图,四棱锥中,底面ABCD为矩形,侧面为正三角形,且平面平面E为PD中点,AD=2.(1)证明平面AEC丄平面PCD;(2)若二面角的平面角满足,求四棱锥的体积.19.(12分)传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,如图是根据调查结果绘制的选手等级人数的条形图.(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?注:,其中.(2)若江西参赛选手共80人,用频率估计概率,试估计其中优秀等级的选手人数;(3)如果在优秀等级的选手中取4名,在良好等级的选手中取2名,再从这6人中任选3人组成一个比赛团队,求所选团队中有2名选手的等级为优秀的概率.20.(12分)设数列满足,,.(1)求数列的通项公式;(2)令,求数列的前项和.21.(12分)已知函数.(1)若曲线与直线相切,求实数的值;(2)若函数有两个零点,,证明.22.(10分)如图为一简单组合体,其底面为正方形,平面,,且,为线段的中点.(Ⅰ)证明:;(Ⅱ)求三棱锥的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:因为是奇函数,所以,故,令,则的单调减区间为,从而可以知道在上单调递减.详解:,因是奇函数,故,也即是,化简得,所以,故,从而,又,故,因此.令,,故的单调减区间为,故在上单调递减.选B.点睛:一般地,如果为奇函数,则,如果为偶函数,则.2、D【解析】
求定积分得到的值,可得的值,再把按照二项式定理展开式,可得中的系数.【详解】∵,且,则展开式,故含的系数为,故选D.【点睛】本题主要考查求定积分,二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.3、B【解析】12或67为空时,第三个空位有4种选择;23或34或45或56为空时,第三个空位有3种选择;因此空位共有2×4+4×3=4、A【解析】
先分析的奇偶性以及在的单调性,然后再对每个选项进行分析.【详解】函数为偶函数,且在上为增函数,对于选项,函数为偶函数,在上为増函数,符合要求;对于选项,函数是偶函数,在上为减函数,不符合题意;对于选项,函数为奇函数,不符合题意;对于选项,函数为非奇非偶函数,不符合要求;只有选项符合要求,故选.【点睛】奇偶函数的判断:(满足定义域关于原点对称的情况下)若,则是奇函数;若,则是偶函数.5、B【解析】
解一元二次不等式求得集合,根据是的子集列不等式,由此求得的取值范围.【详解】由解得,所以,由于且包含于,所以,故的取值范围是.故选:B【点睛】本小题主要考查一元二次不等式的解法,考查根据包含关系求参数的取值范围,属于基础题.6、B【解析】
当时,可求得此时;当时,根据二次函数性质可知,若不合题意;若,此时;根据是在上的最小值可知,从而构造不等式求得结果.【详解】当时,(当且仅当时取等号)当时,当时,在上的最小值为,不合题意当时,在上单调递减是在上的最小值且本题正确选项:【点睛】本题考查根据分段函数的最值求解参数范围的问题,关键是能够确定每一段区间内最值取得的点,从而确定最小值,通过每段最小值之间的大小关系可构造不等式求得结果.7、C【解析】
根据程序图,当x<0时结束对x的计算,可得y值.【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【点睛】本题考查程序框图,是基础题.8、D【解析】
利用四种命题之间的变换可判断A;根据全称命题的否定变法可判断B;利用相关系数与相关性的关系可判断C;利用原命题与逆否命题真假关系可判断D.【详解】对于A,命题“若,则”的否命题为“若,则”,故A错误;对于B,命题“,”的否定是“,”,故B错误;对于C,样本的相关系数r,越接近于1,线性相关程度越大,故C错误;对于D,命题“若,则”为真命题,故逆否命题也为真命题,故D正确;故选:D【点睛】本题考查了判断命题的真假、全称命题的否定、四种命题的转化以及原命题与逆否命题真假关系、相关系数与相关性的关系,属于基础题.9、B【解析】
明确恰好得5分的所有情况:发球四次得分,有两个连续得分和发球四次得分,有三个连续得分,分别求解可得.【详解】该同学在测试中恰好得5分有两种情况:四次发球成功,有两个连续得分,此时概率;四次发球成功,有三个连续得分,分为连续得分在首尾和不在首尾两类,此时概率,所求概率;故选B.【点睛】本题主要考查相互独立事件的概率,题目稍有难度,侧重考查数学建模和数学运算的核心素养.10、A【解析】分析:先求展开式的通项公式,根据展开式中的系数与关系,即可求得答案.详解:展开式的通项公式,可得展开式中含项:即展开式中含的系数为.故选A.点睛:本题考查了二项式定理的应用问题,利用二项展开式的通项公式求展开式中某项的系数是解题关键.11、B【解析】设正方形边长为,则圆的半径为,正方形的面积为,圆的面积为.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是,选B.点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算.12、C【解析】
根据向量平行的坐标关系得解.【详解】,所以向量与平行.【点睛】本题考查向量平行的坐标表示,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
通过余弦定理可以求出的长,而,用余弦定理求出的表达式,代入上式可以直接求出的长.【详解】由余弦定理可知:,设,由余弦定理可知:而,即解得,故边上中线的长为.【点睛】本题考查了利用余弦定理求三角形中线长的问题.本题也可以应用中点三角形来求解,过程如下:延长至,使得,易证出,,由余弦定理可得:..14、【解析】
根据,由定义得,由余弦定理得的方程求解即可【详解】根据,由双曲线定义得,又直线的斜率为,故,中由余弦定理得故答案为【点睛】本题考查双曲线定义及几何性质,余弦定理,运用定义得是本题关键,是中档题15、144【解析】分析:依据题意已经放好一个数字,为了满足要求进行列举出结果详解:第一行将数字填入表格有种可能,然后将数字填入表格有种可能;那么第二行每个数字分别有、、、种可能;根据题意每一行每一列都无重复数字,所以第三行只有种可能,第四行每个数字都只有一种情况,所以一共有点睛:本题考查了排列组合,在解答题目时按照题意采取了列举法,分别考虑每一行的情况,然后再进行排列,在解题时注意是否存在重复的情况。16、【解析】
先求得的零点,由此判断出方程恰有2个不同的实数解,结合图像求得的取值范围.【详解】有两个零点,画出图像如下图所示,依题意恰有4个不同的实数解,则方程恰有2个不同的实数解,由图可知,故的取值范围为.故答案为:【点睛】本小题主要考查根据分段函数图像以及方程零点个数求参数的取值范围,考查数形结合的数学思想方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】分析:(1)他击中目标次数可能取的值为1,1,2,3,4,由题意,随机变量服从二项分布,即~,则可求4发子弹全打光,击中目标次数的数学期望;(2)由题意随机变量可能取的值是1,2,3,4,由此可求他击中目标或子弹打光就停止射击,求消耗的子弹数的分布列详解:(1)他击中目标次数可能取的值为1,1,2,3,4由题意,随机变量服从二项分布,即~(若列出分布列表格计算期望,酌情给分)(2)由题意随机变量可能取的值是1,2,3,412341.91.191.1191.111点睛:本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题.18、(1)见解析;(2)2【解析】
(1)要证平面平面,可证平面即可;(2)建立空间直角坐标系,计算出平面的法向量,平面的法向量,从而利用向量数量积公式求得长度,于是可求得体积.【详解】(1)取中点为,中点为F,由侧面为正三角形,且平面平面知平面,故,又,则平面,所以,又,则,又是中点,则,由线面垂直的判定定理知平面,又平面,故平面平面.(2)如图所示,建立空间直角坐标系,令,则.由(1)知为平面的法向量,令为平面的法向量,由于均与垂直,故即解得故,由,解得.故四棱锥的体积.【点睛】本题主要考查面面垂直的判定定理,二面角的向量求法,几何体的体积计算,建立合适的空间直角坐标系是解决此类问题的关键,意在考查学生的空间想象能力,转化能力,分析能力及计算能力.19、(1)没有的把握认为优秀与文化程度有关(2)60人(3)【解析】分析:(1)由条形图可知列联表,求出,从而即可判断;(2)由条形图可知,所抽取的100人中,优秀等级有75人,故优秀率为,由此能求出参赛选手中优秀等级的选手人数;(3)记优秀等级中4人分别为,,,,良好等级中的两人为,,通过利用列举法即可求得所选团队中有2名选手的等级为优秀的概率.详解:(1)由条形图可知列联表如表:优秀合格合计大学组451055中学组301545合计7525100,∴没有的把握认为优秀与文化程度有关.(2)由条形图可知,所抽取的100人中,优秀等级有75人,故优秀率为,所以所有参赛选手中优秀等级人数约为人.(3)记优秀等级中4人分别为,,,,良好等级中的两人为,,则任取3人的取法有,,,,,,,,,,,,,,,,,,,共20种,其中有2名选手的等级为优秀的有,,,,,,,,,,共12种,故所选团队中的有2名选手的等级为优秀的概率为.点睛:本题考查独立检验的应用,考查分层抽样的应用,考查概率的求法,考查数据处理能力、运算求解能力,考查数形结合思想、函数与方程思想,是中档题.20、(1)(2)【解析】
(1)由数列恒等式,结合等比数列的求和公式,可得所求;(2)求得,运用数列的分组求和和错位相减法求和,结合等比数列的求和公式,可得所求和.【详解】(1),当时,而,符合上式,所以数列的通项公式为(2),设,,相减可得,化简可得,可求和得:【点睛】本题考查等比数列的通项公式和求和公式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年贵阳货运从业模拟考试
- 2025年山南b2从业资格证模拟考试题目
- 2025年怀化考货运从业资格证
- 二零二五年度文化艺术品喷漆修复合同4篇
- 口腔内科学试题
- 2025版塔吊司机及司索工安全雇佣合同
- 2024-2025学年高中地理课时分层作业7环境污染含解析鲁教版选修6
- 2024-2025学年高中历史课时作业9社会主义市抄济体制的建立北师大版必修2
- 2024-2025学年高中语文孟子蚜9儒家之道士志于道精炼含解析苏教版选修论语蚜
- 2024-2025学年高中历史课时作业14紧张对抗中的缓和与对话人民版选修3
- 外科疝气的个案护理
- 2025届江苏省南京市盐城市高三一模考试语文试题 课件
- 广西出版传媒集团有限公司招聘笔试冲刺题2025
- 江苏省南京市2024年中考英语试题(含解析)
- 外科围手术期处理(外科学课件)
- 电力安全工作规程考试试题题库
- 宫颈癌诊疗指南要点
- 两个人合伙买搅拌车的合同
- 体检科护理讲课课件
- 数字化赋能小学语文中段习作教学的有效策略探究
- 脑卒中护理课件
评论
0/150
提交评论