版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若关于的不等式的解集是,则实数等于()A.-1 B.-2 C.1 D.22.在极坐标系中,圆ρ=2cosθ的圆心坐标为()A.(1,π2) B.(-1,π3.甲、乙两人独立地解同一问题,甲解决这个问题的概率是,乙解决这个问题的概率是,那么恰好有1人解决这个问题的概率是()A. B.C. D.4.已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为A. B.C. D.5.已知函数在定义域上有两个极值点,则实数的取值范围是()A. B. C. D.6.某医疗机构通过抽样调查(样本容量n=1000),利用2×2列联表和统计量研究患肺病是否与吸烟有关.计算得,经查阅临界值表知,下列结论正确的是()0.0500.0100.001k3.8416.63510.828A.在100个吸烟的人中约有95个人患肺病 B.若某人吸烟,那么他有的可能性患肺病C.有的把握认为“患肺病与吸烟有关” D.只有的把握认为“患肺病与吸烟有关”7.若,则()A. B. C. D.8.已知二项式的展开式中第2项与第3项的二项式系数之比是2︰5,则的系数为()A.14 B. C.240 D.9.已知经过,两点的直线AB与直线l垂直,则直线l的倾斜角是()A.30° B.60° C.120° D.150°10.设命题:,;命题:若,则,则下列命题为真命题的是()A. B. C. D.11.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为()A. B. C. D.12.在体育选修课排球模块基本功发球测试中,计分规则如下满分为10分:①每人可发球7次,每成功一次记1分;②若连续两次发球成功加分,连续三次发球成功加1分,连续四次发球成功加分,以此类推,,连续七次发球成功加3分假设某同学每次发球成功的概率为,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是(
)A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量.若与共线,则在方向上的投影为________.14.已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=______________15.设Sn为等比数列{an}的前n项和,8a2+a5=0,则=________.16.若,,则,的大小关系是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),直线的普通方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求曲线和直线的极坐标方程;(2)若直线与曲线交于,两点,求.18.(12分)已知函数.(1)解关于的不等式;(2)设,,试比较与的大小.19.(12分)已知直线的参数方程:(为参数),曲线的参数方程:(为参数),且直线交曲线于,两点.(1)将曲线的参数方程化为普通方程,并求时,的长度;(2)已知点,求当直线倾斜角变化时,的范围.20.(12分)已知函数.(Ⅰ)求函数在区间上的最小值;(Ⅱ)判断函数在区间上零点的个数.21.(12分)已知数列满足,(1)求,并猜想的通项公式;(2)用数学归纳法证明(1)中所得的猜想.22.(10分)假设某士兵远程射击一个易爆目标,射击一次击中目标的概率为,三次射中目标或连续两次射中目标,该目标爆炸,停止射击,否则就一直独立地射击至子弹用完.现有5发子弹,设耗用子弹数为随机变量X.(1)若该士兵射击两次,求至少射中一次目标的概率;(2)求随机变量X的概率分布与数学期望E(X).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据一元一次不等式与一元一次方程的关系,列出方程,即可求解.【详解】由题意不等式的解集是,所以方程的解是,则,解得,故选C.【点睛】本题主要考查了一元一次不等式与一元一次方程的关系的应用,着重考查了推理与运算能力,属于基础题.2、D【解析】
把圆的极坐标方程转化为直角坐标方程,求出圆心直角坐标即可.【详解】由ρ=2cosθ,得ρ2=2ρcosθ,化简为直角坐标方程为:x2+y2-2x=0,即x-12所以圆心(1,0),即圆心(1,0)的极坐标为(1,0).故选:D.【点睛】本题考查圆的极坐标方程和直角坐标方程的互化,属于基础题.3、B【解析】分析:先分成两个互斥事件:甲解决问题乙未解决问题和甲解决问题乙未解决问题,再分别求概率,最后用加法计算.详解:因为甲解决问题乙未解决问题的概率为p1(1-p2),甲未解决问题乙解决问题的概率为p2(1-p1),则恰有一人解决问题的概率为p1(1-p2)+p2(1-p1).故选B.点睛:本题考查互斥事件概率加法公式,考查基本求解能力.4、D【解析】
由题意,双曲线的渐近线方程为,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C:上,∴,∵,∴,∴,∴∴椭圆方程为:.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质.5、D【解析】
根据等价转化的思想,可得在定义域中有两个不同的实数根,然后利用根的分布情况,进行计算,可得结果.【详解】,令,方程有两个不等正根,,则:故选:D【点睛】本题考查根据函数极值点求参数,还考查二次函数根的分布问题,难点在于使用等价转化的思想,化繁为简,属中档题.6、C【解析】
将计算出的与临界值比较即可得答案。【详解】由题得,且由临界值表知,所以有的把握认为“患肺病与吸烟有关”,故选C.【点睛】本题考查独立性检验,解题的关键是将估计值与临界值比较,属于简单题。7、A【解析】
根据诱导公式和余弦的倍角公式,化简得,即可求解.【详解】由题意,可得,故选A.【点睛】本题主要考查了三角函数的化简求值问题,其中解答中合理配凑,以及准确利用诱导公式和余弦的倍角公式化简、运算是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】
由二项展开式的通项公式为及展开式中第2项与第3项的二项式系数之比是2︰5可得:,令展开式通项中的指数为,即可求得,问题得解.【详解】二项展开式的第项的通项公式为由展开式中第2项与第3项的二项式系数之比是2︰5,可得:.解得:.所以令,解得:,所以的系数为故选C【点睛】本题主要考查了二项式定理及其展开式,考查了方程思想及计算能力,还考查了分析能力,属于中档题.9、B【解析】
首先求直线的斜率,再根据两直线垂直,求直线的斜率,以及倾斜角.【详解】,,,直线l的倾斜角是.故选B.【点睛】本题考查了两直线垂直的关系,以及倾斜角和斜率的基本问题,属于简单题型.10、D【解析】分析:先判断命题的真假,进而根据复合命题真假的真值表,可得结论.详解:因为成立,所以,不存在,,故命题为假命题,为真命题;当时,成立,但不成立,故命题为假命题,为真命题;故命题均为假命题,命题为真命题,故选D.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查不等式的性质以及特称命题的定义,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.11、B【解析】
记事件甲乙相邻,事件乙丙相邻,利用排列组合思想以及古典概型的概率公式计算出和,再利用条件概率公式可计算出所求事件的概率.【详解】记事件甲乙相邻,事件乙丙相邻,则事件乙和甲丙都相邻,所求事件为,甲乙相邻,则将甲乙两人捆绑,与其他三位同学形成四个元素,排法种数为,由古典概型的概率公式可得.乙和甲丙都相邻,则将甲乙丙三人捆绑,且乙位置正中间,与其他两位同学形成三个元素,排法种数为,由古典概型的概率公式可得,由条件概率公式可得,故选B.【点睛】本题考查条件概率的计算,解这类问题时,要弄清各事件事件的关系,利用排列组合思想以及古典概型的概率公式计算相应事件的概率,并灵活利用条件概率公式计算出所求事件的概率,考查计算能力,属于中等题.12、B【解析】
明确恰好得5分的所有情况:发球四次得分,有两个连续得分和发球四次得分,有三个连续得分,分别求解可得.【详解】该同学在测试中恰好得5分有两种情况:四次发球成功,有两个连续得分,此时概率;四次发球成功,有三个连续得分,分为连续得分在首尾和不在首尾两类,此时概率,所求概率;故选B.【点睛】本题主要考查相互独立事件的概率,题目稍有难度,侧重考查数学建模和数学运算的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用共线向量的坐标表示求出参数,再依据投影的概念求出结果即可.【详解】∵∴.又∵与共线,∴,∴,∴,∴在方向上的投影为.【点睛】本题主要考查共线向量的坐标表示以及向量投影的概念,注意投影是个数量.14、-1【解析】分析:展开式的系数为的二次项系数,加上与展开式中的系数乘积的和,由此列方程求得的值.详解:,其展开式中含项的系数,解得,故答案为.点睛:本题主要考查了二项式定理的应用问题,利用二项式展开式的通项公式求某一项的系数,是常见的题目.15、-11【解析】通过8a2+a5=0,设公比为q,将该式转化为8a2+a2q3=0,解得q=-2,所以===-11.16、【解析】分析:作差法,用,判断其符号.详解:,所以,.点睛:作差法是比较大小的基本方法,根式的分子有理化是解题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)先将曲线的参数方程化为普通方程,再化为极坐标方程;根据直线过原点,即可得的极坐标方程.(2)联立直线的极坐标方程与曲线的极坐标方程,根据极径的关系代入即可求得的值.【详解】(1)由曲线的参数方程为(为参数),得曲线的普通方程为,所以曲线的极坐标方程为,即.因为直线过原点,且倾斜角为,所以直线的极坐标方程为.(2)设点,对应的极径分别为,,由,得,所以,,又,,所以.【点睛】本题考查了参数方程、普通方程和极坐标方程的转化,利用极坐标求线段和,属于中档题.18、(1);(2).【解析】试题分析:(1)讨论的范围,去掉绝对值符号,分段求出不等式的解,取并集即得原不等式的解集;(2)由(1)易知,所以,作差并因式分解判断出差的符号即可得到与的大小.试题解析:(1).....................2分从面得或或,解之得或或,所以不等式的解集为................5分(2)由(1)易知,所以.....................7分由于...........8分且,所以,即,所以.....................10分考点:绝对值不等式的解法及比较法比较大小.19、(1)(2)【解析】分析:(1)联立直线和椭圆方程得到,∴,由点点距离公式得到AB的长度;(2)联立直线和椭圆得到t的二次方程,根据韦达定理得到,进而得到范围.详解:(1)曲线的参数方程:(为参数),曲线的普通方程为.当时,直线的方程为,代入,可得,∴.∴;(2)直线参数方程代入,得.设对应的参数为,∴.点睛:这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.20、(1)当时,的最小值为;当时,的最小值为;(2)见解析.【解析】分析:⑴求导后分类讨论的取值,结合单调性求出最小值⑵分离参量,转化为图像交点问题详解:(Ⅰ)因为,①当时,,所以在上是增函数,无最小值;②当时,又得,由得∴在上是减函数,在上是增函数,若,则在上是减函数,则;若,则在上是减函数,在上是增函数,∴综上:当时,的最小值为;当时,的最小值为(Ⅱ)由得令,则,由得,由得,所以在上是减函数,在上是增函数,且,且,当时,,所以,当时,无有零点;当或时,有1个零点;当时,有2个零点.点睛:本题考查了含有参量的导数题目,依据导数,分类讨论参量的取值范围,来求出函数的单调性,从而得到最小值,在零点个数问题上将其转化为两个图像的交点问题。21、(1),猜想.(2)见解析.【解析】分析:(1)直接由原式计算即可得出,然后根据数值规律得,(2)直接根据数学归纳法的三个步骤证明即可.详解:(1),猜想.(2)当时,命题成立;假设当时命题成立,即,故当时,,故时猜想也成立.综上所述,猜想成立,即.点睛:考查数学归纳法,对数学归纳法的证明过程的熟悉是解题关键,属于基础题.22、(1).(2)分布列见解析,.【解析】分析:(1)利用对立事件即可求出答案;(2)耗用子弹数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生职业生涯规划创业计划书模板30
- 《电气控制原理图》课件
- DB32T-建筑工程BIM规划报建数据规范编制说明
- 给予是快乐的课件公开课专用
- 《口腔洁治课件》课件
- 基因工程的基本操作程序课件
- 《TA沟通分析课程》课件
- 《伊犁河大桥》课件
- 生活处处有哲学课件
- 单位管理制度展示汇编【员工管理篇】
- 慢阻肺GOLD指南解读
- T-BIE 003-2023 通孔回流焊接技术规范
- 口腔颌面外科学 09颞下颌关节疾病
- 台达变频器说明书
- 2023年广东罗浮山旅游集团有限公司招聘笔试题库及答案解析
- DB11-T1835-2021 给水排水管道工程施工技术规程高清最新版
- 解剖篇2-1内脏系统消化呼吸生理学
- 《小学生错别字原因及对策研究(论文)》
- 智慧水库平台建设方案
- 系统性红斑狼疮-第九版内科学
- 粮食平房仓设计规范
评论
0/150
提交评论