2023年浙江教育绿色评价联盟数学高二下期末监测模拟试题含解析_第1页
2023年浙江教育绿色评价联盟数学高二下期末监测模拟试题含解析_第2页
2023年浙江教育绿色评价联盟数学高二下期末监测模拟试题含解析_第3页
2023年浙江教育绿色评价联盟数学高二下期末监测模拟试题含解析_第4页
2023年浙江教育绿色评价联盟数学高二下期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线y=ex在A处的切线与直线x﹣y+1=0平行,则点A的坐标为()A.(﹣1,e﹣1) B.(0,1) C.(1,e) D.(0,2)2.设等差数列的前n项和为,若,则()A.3 B.4 C.5 D.63.安排4名志愿者完成5项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A.120种 B.180种 C.240种 D.480种4.己知命题P:单位向量的方向均相同,命题q:实数a的平方为负数。则下列说法正确的是A.是真命题 B.是真命题 C.是假命题 D.是假命题5.如图,在正方形内任取一点,则点恰好取自阴影部分内的概率为()A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A. B. C. D.7.安排位同学摆成一排照相.若同学甲与同学乙相邻,且同学甲与同学丙不相邻,则不同的摆法有()种A. B. C. D.8.执行如图所示的程序框图,若输入x值满足则输出y值的取值范围是()A. B. C. D.9.已知,,,(e为自然对数的底)则a,b,c的大小关系为()A. B.C. D.10.正数满足,则()A. B. C. D.11.如果函数y=f(x)的图象如图所示,那么导函数的图象可能是A. B. C. D.12.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.400,40 B.200,10 C.400,80 D.200,20二、填空题:本题共4小题,每小题5分,共20分。13.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是_____.14.曲线绕坐标原点顺时针旋转后得到的曲线的方程为____.15.已知点在不等式组,表示的平面区域上运动,则的取值范围是__________16.已知复数z满足,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)用0,1,2,3,4五个数字组成五位数.(1)求没有重复数字的五位数的个数;(2)求没有重复数字的五位偶数的个数.18.(12分)已知函数关系式:的部分图象如图所示:(1)求,,的值;(2)设函数,求在上的单调递减区间.19.(12分)已知数列各项均为正数,,,.(1)若,①求的值;②猜想数列的通项公式,并用数学归纳法证明;(2)若,证明:当时,.20.(12分)设函数.(1)讨论函数的单调性;(2)若函数恰有两个零点,求的取值范围.21.(12分)如果,求实数的值.22.(10分)的内角A,B,C的对边分别为a,b,c.已知.(1)求角C;(2)若,,求的周长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由题意结合导函数研究函数的性质即可确定点A的坐标.【详解】设点A的坐标为,,则函数在处切线的斜率为:,切线与直线x﹣y+1=0平行,则,解得:,切点坐标为,即.本题选择B选项.【点睛】本题主要考查导函数研究函数的切线,直线平行的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.2、C【解析】

由又,可得公差,从而可得结果.【详解】是等差数列又,∴公差,,故选C.【点睛】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.3、C【解析】

根据题意,分两步进行分析:先将5项工作分成4组,再将分好的4组进行全排,对应4名志愿者,分别求出每一步的情况数,由分步计数原理计算即可得到答案。【详解】根据题意,分2步进行分析:(1)先将5项工作分成4组,有种分组方法;(2)将分好的4组进行全排,对应4名志愿者,有种情况;分步计数原理可得:种不同的安排方式。故答案选C【点睛】本题考查排列、组合的综合应用,注意题目中“每人至少完成1项,每项工作由1人完成”的要求,属于基础题。4、D【解析】

先判断命题P,命题q均为假.再逐项判断每个选项的正误.【详解】命题P:单位向量的方向可以是任意的,假命题命题q:实数a的平方为非负数,假命题为假命题,A错误为假命题,B错误是真命题,C错误是假命题,D正确故答案选D【点睛】本题考查了命题的判断,正确判断命题的正误是解决此类题型的关键.5、B【解析】

由定积分的运算得:S阴(1)dx=(x),由几何概型中的面积型得:P(A),得解.【详解】由图可知曲线与正方形在第一象限的交点坐标为(1,1),由定积分的定义可得:S阴(1)dx=(x),设“点M恰好取自阴影部分内”为事件A,由几何概型中的面积型可得:P(A),故选B.【点睛】本题考查了定积分的运算及几何概型中的面积型,考查基本初等函数的导数,属基础题6、A【解析】

本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有情况,其中6爻中恰有3个阳爻情况有,所以该重卦恰有3个阳爻的概率为=,故选A.【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7、C【解析】

利用间接法,在甲同学与乙同学相邻的所有排法种减去甲同学既与乙同学相邻,又与乙同学相邻的排法种数,于此可得出答案.【详解】先考虑甲同学与乙同学相邻,将这两位同学捆绑,与其他三位同学形成四个元素,排法总数为种,再考虑甲同学既与乙同学相邻又与丙同学相邻的相邻的情况,即将这三位同学捆绑,且将甲同学置于正中间,与其余两位同学形成三个元素,此时,排法数为.因此,所求排法数为,故选C.【点睛】本题考查排列组合问题,问题中出现了相邻,考虑用捆绑法来处理,需要注意处理内部元素与外部元素的排法顺序,结合分步计数原理可得出答案.8、A【解析】

直接利用程序框图和分段函数求出结果.【详解】当时,,当时,,得,即.故选:A【点睛】本题考查了程序框图以及分段函数求值,属于基础题.9、A【解析】

根据条件即可得出,a=log2e,b=ln2,c=log23,容易得出log23>log2e>1,ln2<1,从而得出a,b,c的大小关系.【详解】∵;∴;∵log23>log2e>log22=1,ln2<lne=1;∴c>a>b.故选:A.【点睛】本题考查指数式和对数式的互化,对数的换底公式,考查了利用对数函数的单调性比较大小的问题,属于基础题.10、C【解析】给定特殊值,不妨设,则:.本题选择C选项.11、A【解析】试题分析:由原函数图像可知函数单调性先增后减再增再减,所以导数值先正后负再正再负,只有A正确考点:函数导数与单调性及函数图像12、A【解析】

由扇形图能得到总数,利用抽样比较能求出样本容量;由分层抽样和条形图能求出抽取的高中生近视人数.【详解】用分层抽样的方法抽取的学生进行调查,样本容量为:,抽取的高中生近视人数为:,故选A.【点睛】该题考查的是有关概率统计的问题,涉及到的知识点有扇形图与条形图的应用,以及分层抽样的性质,注意对基础知识的灵活应用,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、甲【解析】试题分析:若负主要责任的是甲,则甲乙丙都在说假话,只有丁说真话,符合题意.若负主要责任的是乙,则甲丙丁都在说真话,不合题意.若负主要责任的是丙,则乙丁都在说真话,不合题意.若负主要责任的是丁,则甲乙丙丁都在说假话,不合题意.考点:逻辑推理.14、;【解析】

曲线绕坐标原点顺时针旋转,这个变换可分成两个步骤:先是关于直线对称,再关于轴对称得到.【详解】绕坐标原点顺时针旋转90°等同于先关于直线翻折,再关于轴翻折,关于直线翻折得到,再关于轴翻折得到.【点睛】本题表面考查旋转变换,而实质考查的是两次的轴对称变换,要注意指数函数与同底数的对数函数关于直线对称.15、【解析】

画出可行域,然后利用目标函数的等值线在可行域中进行平移,根据或含的式子的含义,目标函数取最值得最优解,可得结果.【详解】如图令,则为目标函数的一条等值线将等值线延轴正半轴方向移到到点则点是目标函数取最小值得最优解将等值线延轴负半轴方向移到到点则点是目标函数取最大值得最优解所以所以故答案为:【点睛】本题考查线性规划,一般步骤:(1)作出可行域;(2)理解或含的式子的含义,利用等值线在可行域中移动找到目标函数取最值得最优解,属基础题.16、【解析】

求出复数,代入模的计算公式得.【详解】由,所以.【点睛】本题考查复数的四则运算及模的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)96(2)60【解析】分析:(1)首位有种选法,后四位所剩四个数任意排列有种方法根据分部乘法计数原理,可求没有重复数字的五位数的个数;(2)由题意,分2类:末尾是0的五位偶数;末尾不是0的五位偶数,最后根据分类加法计数原理,可求没有重复数字的五位偶数个数.详解:(I)首位有种选法,后四位所剩四个数任意排列有种方法根据分部乘法计数原理,所求五位数个数为(II)由题意,分2类末尾是0的五位偶数个数有个末尾不是0的五位偶数个数有个∴根据分类加法计数原理,没有重复数字的五位偶数个数为个点睛:本题考查排列组合知识的综合应用,考查学生分析解决问题的能力,属于基础题.18、(1).(2).【解析】分析:(1)根据函数图像最高点可确定A值,根据已知水平距离可计算周期,从而得出,然后代入图像上的点到原函数可求得即可;(2)先根据(1)得出g(x)表达式,然后根据正弦函数图像求出单调递减区间,再结合所给范围确定单调递减区间即可.详解:(1)由图形易得,,解得,此时.因为的图象过,所以,得.因为,所以,所以,得.综上,,.(2)由(1)得.由,解得,其中.取,得,所以在上的单调递减区间为.点睛:考查三角函数的图像和基本性质,对三角函数各个变量的作用和求法的熟悉是解题关键,属于基础题.19、(1)①;;②(2)见证明【解析】

(1)①根据递推公式,代入求值即可;②观察已知的数列的前几项,根据其特征,先猜想其通项公式,之后应用数学归纳法证明即可得结果;(2)应用数学归纳法证明.【详解】(1)当时,即当时,当时,当时,②由此猜想:证明如下:①当时,,成立;②假设当时,猜想也成立,即,则当时,.即当时,猜想也成立.由①②得,猜想成立,即.()(2)当时,即当时,由知不等式成立.假设当时,命题也成立,即.由即当时,命题也成立.由①②得,原命题成立,即当时,.【点睛】该题考查的是数列的有关问题,涉及到的知识点有根据递推公式求数列的特定项,根据已知的数列的前几项猜想数列的通项公式,应用数学归纳法证明问题,属于中档题目.20、(1)见解析;(2)【解析】

(1),讨论a,求得单调性即可(2)利用(1)的分类讨论,研究函数最值,确定零点个数即可求解【详解】(1)因为,其定义域为,所以.①当时,令,得;令,得,此时在上单调递减,在上单调递增.②当时,令,得或;令,得,此时在,上单调递减,在上单调递增.③当时,,此时在上单调递减.④当时,令,得或;令,得,此时在,上单调递减,在上单调递增.(2)由(1)可知:①当时,.易证,所以.因为,,.所以恰有两个不同的零点,只需,解得.②当时,,不符合题意.③当时,在上单调递减,不符合题意.④当时,由于在,上单调递减,在上单调递增,且,又,由于,,所以,函数最多只有1个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论