版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题,;命题在中,若,则.下列命题为真命题的是()A. B. C. D.2.已知,则()A. B. C. D.3.若某几何体的三视图如图所示,则这个几何体的表面积是()A. B. C.19 D.4.已知椭圆E:x2a2+y24=1,设直线l:y=kx+1k∈R交椭圆A.mx+y+m=0 B.mx+y-m=0C.mx-y-1=0 D.mx-y-2=05.已知随机变量服从二项分布,则().A. B. C. D.6.已知,的最小值为,则的最小值为()A. B. C. D.7.某电子元件生产厂家新引进一条产品质量检测线,现对检测线进行上线的检测试验:从装有个正品和个次品的同批次电子元件的盒子中随机抽取出个,再将电子元件放回.重复次这样的试验,那么“取出的个电子元件中有个正品,个次品”的结果恰好发生次的概率是()A. B. C. D.8.某商场对某一商品搞活动,已知该商品每一个的进价为3元,销售价为8元,每天售出的第20个及之后的半价出售.该商场统计了近10天这种商品的销量,如图所示,设x(个)为每天商品的销量,y(元)为该商场每天销售这种商品的利润.从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率是()A.110 B.19 C.19.已知数列为单调递增的等差数列,为前项和,且满足,、、成等比数列,则()A.55 B.65 C.70 D.7510.己知,是椭圆的左右两个焦点,若P是椭圆上一点且,则在中()A. B. C. D.111.等比数列的前n项和,前2n项和,前3n项的和分别为A,B,C,则A. B.C. D.12.函数在的图像大致为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点为椭圆的左焦点,点为椭圆上任意一点,点的坐标为,则取最大值时,点的坐标为.14.某公司生产甲、乙、丙三种型号的吊车,产量分别为120台,600台和200台,为检验该公司的产品质量,现用分层抽样的方法抽取46台进行检验,则抽到乙种型号的吊车应是____台.15.已知函数,对任意,都有,则____________16.端午节小长假期间,张洋与几位同学从天津乘到大连去旅游,若当天从天津到大连的三列火车正点到达的概率分别为,,,假设这三列火车之间是否正点到达互不影响,则这三列火车恰好有两列正点到达的概率是____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数f(x)=1-x2+ln(x+1).(1)求函数f(x)的单调区间;(2)若不等式f(x)>-x2(k∈N*)在(0,+∞)上恒成立,求k的最大值.18.(12分)在中,角所对的边分别为,其中(1)求;(2)求边上的高,19.(12分)为了适应高考改革,某中学推行“创新课堂”教学。高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)(1)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?(2)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.参考公式临界值表20.(12分)已知函数f(x)=ex,g(x)=lnx.(1)设f(x)在x1处的切线为l1,g(x)在x2处的切线为l2,若l1//l2,求x1+g(x2)的值;(2)若方程af2(x)-f(x)-x=0有两个实根,求实数a的取值范围;(3)设h(x)=f(x)(g(x)-b),若h(x)在[ln2,ln3]内单调递减,求实数b的取值范围.21.(12分)某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成.规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.(1)分别求甲、乙两人正确完成面试题数的分布列及数学期望;(2)请分析比较甲、乙两人谁面试通过的可能性大?22.(10分)已知函数(1)设的最大值为,求的最小值;(2)在(1)的条件下,若,且,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
判断出命题、的真假,即可判断出各选项中命题的真假,进而可得出结论.【详解】函数在上单调递增,,即命题是假命题;又,根据正弦定理知,可得,余弦函数在上单调递减,,即命题是真命题.综上,可知为真命题,、、为假命题.故选:C.【点睛】本题考查复合命题真假的判断,解答的关键就是判断出各简单命题的真假,考查推理能力,属于中等题.2、C【解析】
根据二项分布求对应概率【详解】,所以选C.【点睛】本题考查二项分布,考查基本分析求解能力,属基础题.3、B【解析】
判断几何体的形状几何体是正方体与一个四棱柱的组合体,利用三视图的数据求解几何体的表面积即可.【详解】由题意可知几何体是正方体与一个四棱柱的组合体,如图:几何体的表面积为:.故选B.【点睛】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,属于中档题.4、D【解析】
在直线l中取k值,对应地找到选项A、B、C中的m值,使得直线与给出的直线关于坐标轴或原点具有对称性得出答案。【详解】当直线l过点-1,0,取m=-1,直线l和选项A中的直线重合,故排除A;当直线l过点1,0,取m=-1,直线l和选项B中的直线关于y轴对称,被椭圆E截得的弦长相同,故排除B;当k=0时,取m=0,直线l和选项C中的直线关于x轴对称,被椭圆E截得的弦长相同,故排除C;直线l的斜率为k,且过点0,1,选项D中的直线的斜率为m,且过点0,-2,这两条直线不关于x轴、y轴和原点对称,故被椭圆E所截得的弦长不可能相等。故选:D。【点睛】本题考查直线与椭圆的位置关系,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于中等题。5、D【解析】表示做了次独立实验,每次试验成功概率为,则.选.6、C【解析】
如图所示:在直角坐标系中,取点,,,得到的轨迹方程为,故,得到答案.【详解】如图所示:在直角坐标系中,取点,,,则,,满足,设,过点作垂直于所在的直线与,则的最小值为,即,根据抛物线的定义知的轨迹方程为:.取,故,即,当垂直于准线时等号成立.故选:.【点睛】本题考查了向量和抛物线的综合应用,根据抛物线的定义得到的轨迹方程是解题的关键.7、B【解析】
取出的个电子元件中有个正品,个次品的概率,重复次这样的试验,利用次独立重复试验中事件恰好发生次的概率计算公式能求出“取出的个电子元件中有个正品,个次品”的结果恰好发生次的概率【详解】从装有个正品和个次品的同批次电子元件的盒子中随机抽取出个,再将电子元件放回,取出的个电子元件中有个正品,个次品的概率,重复次这样的试验,那么“取出的个电子元件中有个正品,个次品”的结果恰好发生次的概率是:.故选:B【点睛】本题考查了次独立重复试验中事件恰好发生次的概率计算公式,属于基础题.8、A【解析】
分别计算每个销量对应的利润,选出日利润不少于96元的天数,再利用排列组合公式求解.【详解】当x=18时:y=18×5=90当x=19时:y=19×5=95当x=20时:y=19×5+1=96当x=21时:y=19×5+2=97日利润不少于96元共有5天,2天日利润是97元故P=C故答案选A【点睛】本题考查了频率直方图,概率的计算,意在考查学生的计算能力.9、A【解析】
设公差为d,,,解出公差,利用等差数列求和公式即可得解.【详解】由题:数列为单调递增的等差数列,为前项和,且满足,、、成等比数列,设公差为d,,,解得,所以.故选:A【点睛】此题考查等差数列基本量的计算,根据等比中项的关系求解公差,利用求和公式求前十项之和.10、A【解析】
根据椭圆方程求出、,即可求出、,再根据余弦定理计算可得;【详解】解:因为,所以,,又因为,,所以,在中,由余弦定理,即,,故选:【点睛】本题考查椭圆的简单几何性质及余弦定理解三角形,属于基础题.11、D【解析】分析:由等比数列的性质,可知其第一个项和,第二个项和,第三个项和仍然构成等比数列,化简即可得结果.详解:由等比数列的性质可知,等比数列的第一个项和,第二个项和,第三个项和仍然构成等比数列,则有构成等比数列,,即,,故选D.点睛:本题考查了等比数列的性质,考查了等比数列前项和,意在考查灵活运用所学知识解决问题的能力,是基础题.12、B【解析】
由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.【详解】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:椭圆的左焦点为,右焦点为,根据椭圆的定义,,∴,由三角形的性质,知,当是延长线与椭圆的交点时,等号成立,故所求最大值为.考点:椭圆的定义,三角形的性质.14、30;【解析】
根据分层抽样的特点,抽出样本46台中乙种型号的吊车的比例,与总体中乙种型号的吊车的比例相等.【详解】抽到乙种型号的吊车x台,则x46=600【点睛】本题考查简单随机抽样中的分层抽样.15、-20【解析】分析:令,知,,从而可得,进而可得结果.详解:令,知,,,,,,故答案为.点睛:本题主要考查赋值法求函数的解析式,令,求出的值,从而求出函数解析式,是解题的关键,属于中档题.16、【解析】设当天从天津到大连的三列火车正点到达的事件分别为A,B,C,则,事件A,B,C相互独立,∴这三列火车恰好有两列正点到达的概率:,故答案为:0.398.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)1【解析】
(1)首先求出f(x)的定义域,函数f(x)的导数,分别令它大于0,小于0,解不等式,必须注意定义域,求交集;(2)化简不等式f(x)>﹣x2,得:(x+1)[1+ln(x+1)]>kx,令g(x)=(x+1))[1+ln(x+1)]﹣kx,求出g'(x),由x>0,求出2+ln(x+1)>2,讨论k,分k≤2,k>2,由恒成立结合单调性判断k的取值,从而得到k的最大值.【详解】(1)函数f(x)的定义域为(﹣1,+∞),函数f(x)的导数f'(x)=﹣2x+,令f'(x)>0则>2x,解得,令f'(x)<0则,解得x>或x<,∵x>﹣1,∴f(x)的单调增区间为(﹣1,),单调减区间为(,+∞);(2)不等式f(x)>﹣x2即1﹣x2+ln(x+1)>,即1+ln(x+1)>,即(x+1)[1+ln(x+1)]>kx(k∈N*)在(0,+∞)上恒成立,令g(x)=(x+1))[1+ln(x+1)]﹣kx,则g'(x)=2+ln(x+1)﹣k,∵x>0,∴2+ln(x+1)>2,若k≤2,则g'(x)>0,即g(x)在(0,+∞)上递增,∴g(x)>g(0)即g(x)>1>0,∴(x+1)[1+ln(x+1)]>kx(k∈N*)在(0,+∞)上恒成立;若k>2,可以进一步分析,只需满足最小值比0大,即可,结合K为正整数,故k的最大值为1.【点睛】本题主要考查运用导数求函数的单调性,求解时应注意函数的定义域,同时考查含参不等式恒成立问题,通常运用参数分离,转化为求函数的最值,但求最值较难,本题转化为大于0的不等式,构造函数g(x),运用导数说明g(x)>0恒成立,从而得到结论.这种思想方法要掌握.18、(1);(2)【解析】
(1)利用同角三角函数的基本关系求出,再由正弦定理求出,即可得解;(2)首先由两角和的正弦公式求出,过作交于点,在中,,即可求出;【详解】解:(1)因为且,,,由正弦定理可得,即解得,因为,(2)如图,过作交于点,在中如图所示,在中,故边上的高为【点睛】本题考查同角三角函数的基本关系,正弦定理解三角形以及三角恒等变换的应用,属于中档题.19、(1)列联表见解析;有以上的把握认为“成绩优秀与教学方式有关”;(2)【解析】
(1)根据频数表可补充列联表,从而计算求得,得到有以上的把握;(2)首先确定所有可能的取值,分别计算每个取值对应的概率,进而得到分布列;根据数学期望计算公式求得期望.【详解】(1)补充的列联表如下表:传统教学创新教学总计成绩优秀成绩不优秀总计有以上的把握认为“成绩优秀与教学方式有关”(2)由题意得:所有可能的取值为:则;;;的分布列为:数学期望【点睛】本题考查独立性检验的应用、服从超几何分布列的随机变量的分布列和数学期望的求解;关键是能够准确确定随机变量所服从的分布类型,进而运用对应的公式求解概率,属于常考题型.20、(1)0.(2)0<a<1.(3)b≥ln2+.【解析】分析:(1)求导,利用l1//l2时k值相等,即可求出答案;(2)参变分离,利用导数的应用以及数形结合即可得到答案;(3)由题意h(x)=f(x)(g(x)-b)=ex(lnx-b),求导,因为h(x)在[ln2,ln3]内单调递减,所以在[ln2,ln3]上恒成立,再参变分离,分析讨论即可.详解:(1)f′(x)=ex,g′(x)=由题意知:=故x1+g(x2)=x1-ln=0.(2)方程af2(x)-f(x)-x=0,ae2x-ex-x=0,a=令φ(x)=,则φ′(x)=-当x<0时,ex<1,ex-1<0,所以ex+2x-1<0,所以φ′(x)>0,故φ(x)单调增;当x>0时,ex>1,ex-1>0,所以ex+2x-1>0,所以φ′(x)<0,故φ(x)单调减.从而φ(x)max=φ(0)=1又,当x>0时,φ(x)=>0原方程有两个实根等价于直线y=a与φ(x)的图像有两个交点,故0<a<1.(3)由题意h(x)=f(x)(g(x)-b)=ex(lnx-b),得h′(x)=ex(lnx+-b)因为h(x)在[ln2,ln3]内单调递减,所以h′(x)=ex(lnx+-b)≤0在[ln2,ln3]内恒成立由于ex>0,故只需lnx+-b≤0在[ln2,ln3]内恒成立即b≥lnx+在[ln2,ln3]内恒成立令t(x)=lnx+,t′(x)=-=当ln2≤x<1时,t′(x)<0,故t(x)单调减;当1≤x≤ln3时,t′(x)>0,故t(x)单调增.下面只要比较t(ln2)与t(ln3)的大小.思路:[详细过程略]先证明:x1+x2>2又,ln2+ln3=ln6<2故当x1=ln2时,ln3<x2即t(ln3)<t(ln2)所以t(x)max=t(ln2)=ln2+所以b≥ln2+.点睛:由函数的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上f′(x)≥0(或f′(x)≤0)(f′(x)在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024双方关于二手挖掘机买卖的风险评估合同
- 2024年度智能科技企业对个人高端产品购销合同2篇
- 2024年度环保项目合作与投资合同标的明细3篇
- 2024年大型购物中心物业管理合同
- 2024版劳务分包安装合同3篇
- 2024年南美洲足球赛事转播权销售与购买合同
- 2024年定制包工包料建房协议格式样本版
- 2024版智慧农业平台建设与种植技术共享合同3篇
- 2024年度空调风管系统清洗与消毒合同2篇
- 二零二四年度品牌竞争分析合同2篇
- 生理学智慧树知到答案章节测试2023年暨南大学
- SAP矿业-解决方案-V1
- 燃气锅炉安装施工方案
- (10.1)-9第九章免疫细胞
- GB/T 9113.1-2000平面、突面整体钢制管法兰
- GB/T 1357-2008通用机械和重型机械用圆柱齿轮模数
- GB/T 11344-2021无损检测超声测厚
- 德语口语课件
- 液力液力耦合器课件
- 烹饪工艺学课件讲义
- 脓毒血症指南
评论
0/150
提交评论