2023年四川省成都市新都第一中学数学高二第二学期期末经典模拟试题含解析_第1页
2023年四川省成都市新都第一中学数学高二第二学期期末经典模拟试题含解析_第2页
2023年四川省成都市新都第一中学数学高二第二学期期末经典模拟试题含解析_第3页
2023年四川省成都市新都第一中学数学高二第二学期期末经典模拟试题含解析_第4页
2023年四川省成都市新都第一中学数学高二第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线在点处的切线方程是()A. B. C. D.2.已知命题在上递减;命题,且是的充分不必要条件,则m的取值范围为()A. B. C. D.3.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球 B.三棱锥 C.正方体 D.圆柱4.在各项都为正数的等差数列{an}中,若a1+a2+…+a10=30,则a5•a6的最大值等于()A.3B.6C.9D.365.已知的分布列为:设则的值为()A. B. C. D.56.若为纯虚数,则实数的值为()A.-2 B.2 C.-3 D.37.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3 B.1 C.-1 D.-38.已知函数在区间内既有极大值又有极小值,则实数的取值范围是()A. B. C. D.9.已知向量,且,则等于()A.1 B.3 C.4 D.510.已知点是的外接圆圆心,.若存在非零实数使得且,则的值为()A. B. C. D.11.如图所示阴影部分是由函数、、和围成的封闭图形,则其面积是()A. B. C. D.12.中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为且;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是()A.乙有四场比赛获得第三名B.每场比赛第一名得分为C.甲可能有一场比赛获得第二名D.丙可能有一场比赛获得第一名二、填空题:本题共4小题,每小题5分,共20分。13.在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布,已知成绩在到分之间的学生有名,若该校计划奖励竞赛成绩在分以上(含分)的学生,估计获奖的学生有________.人(填一个整数)(参考数据:若有,14.已知函数在定义域内存在单调递减区间,则实数的取值范围是______15.正项等差数列中的,是函数的极值点,则______.16.设是定义在上、以1为周期的函数,若在上的值域为,则在区间上的值域为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知向量,函数.(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值.18.(12分)已知过抛物线y2=2pxp>0的焦点,斜率为22的直线交抛物线于(1)求抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若OC=OA+λOB19.(12分)已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.20.(12分)已知不等式.(1)当时,求不等式的解集;(2)若不等式的解集为,求的范围.21.(12分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=t,建立如图所示的空间直角坐标系O—xyz.(1)若t=1,求异面直线AC1与A1B所成角的大小;(2)若t=5,求直线AC1与平面A1BD所成角的正弦值;(3)若二面角A1—BD—C的大小为120°,求实数t的值.22.(10分)为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,数据如下表所示:支付方式微信支付宝购物卡现金人数200150150100现有甲、乙、丙三人将进入该超市购物,各人支付方式相互独立,假设以频率近似代替概率.(1)求三人中使用微信支付的人数多于现金支付人数的概率;(2)记X为三人中使用支付宝支付的人数,求X的分布列及数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

求导得到,故,计算切线得到答案.【详解】,,,所以切线方程为,即.故选:.【点睛】本题考查了切线方程,意在考查学生的计算能力.2、A【解析】

由题意可得当时不成立,当时,满足求出的范围,从而求出,再求出,根据是的充分不必要条件,即可求解.【详解】由命题在上递减,当时,,不满足题意,当时,则,所以:,由命题,则:,由因为是的充分不必要条件,所以.故选:A【点睛】本题考查了由充分不必要条件求参数的取值范围以及考查了二次函数的图像与性质,同时考查了学生的逻辑推理能力,属于中档题.3、D【解析】

试题分析:球的三视图都是圆,如果是同一点出发的三条侧棱两两垂直,并且长度相等的三棱锥(一条侧棱与底面垂直时)的三视图是全等的等腰直角三角形,正方体的三视图可以都是正方形,但圆柱的三视图中有两个视图是矩形,有一个是圆,所以圆柱不满足条件,故选D.考点:三视图4、C【解析】试题分析:由题设,所以,又因为等差数列各项都为正数,所以,当且仅当时等号成立,所以a5·a6的最大值等于9,故选C.考点:1、等差数列;2、基本不等式.5、A【解析】

求出η的期望,然后利用,求解即可.【详解】由题意可知E(η)=﹣101.∵,所以=E(1η﹣2)=1E(η)﹣21.故选A.【点睛】本题考查数学期望的运算性质,也可根据两个变量之间的关系写出ξ的分布列,再由ξ分布列求出期望.6、C【解析】

本题首先可以确定复数的实部和虚部,然后根据纯虚数的相关性质即可列出方程组,通过计算即可得出结果.【详解】因为为纯虚数,所以,解得,故选C.【点睛】本题考查复数的相关性质,主要考查纯虚数的相关性质,纯虚数的实部为0且虚部不为0,考查运算求解能力,考查方程思想,是简单题.7、D【解析】

∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=1.∴f(-1)=-f(1)=-1.故选D.8、A【解析】分析:先求导得到,转化为方程在(0,2)内有两个相异的实数根,再利用根的分布来解答得解.详解:由题得,原命题等价于方程在(0,2)内有两个相异的实数根,所以.故答案为:A.点睛:(1)本题主要考查导数的应用,考查导数探究函数的极值问题,意在考查学生对这些基础知识的掌握水平和分析推理能力数形结合的思想方法.(2)解答本题有两个关键,其一是转化为方程在(0,2)内有两个相异的实数根,其二是能准确找到方程在(0,2)内有两个相异的实数根的等价不等式组,它涉及到二次方程的根的分布问题.9、D【解析】

先根据已知求出x,y的值,再求出的坐标和的值.【详解】由向量,且,则,解得,所以,所以,所以,故答案为D【点睛】本题主要考查向量的坐标运算和向量的模的计算,意在考查学生对这些知识的掌握水平和分析推理能力.10、D【解析】

根据且判断出与线段中点三点共线,由此判断出三角形的形状,进而求得的值.【详解】由于,由于,所以与线段中点三点共线,根据圆的几何性质可知直线垂直平分,于是是以为底边的等腰三角形,于是,故选D.【点睛】本小题主要考查平面向量中三点共线的向量表示,考查圆的几何性质、等腰三角形的几何性质,属于中档题.11、B【解析】

根据定积分的几何意义得到阴影部分的面积。【详解】由定积分的几何意义可知:阴影部分面积故选B.【点睛】本题考查定积分的几何意义和积分运算,属于基础题.12、A【解析】

先计算总分,推断出,再根据正整数把计算出来,最后推断出每个人的得分情况,得到答案.【详解】由题可知,且都是正整数当时,甲最多可以得到24分,不符合题意当时,,不满足推断出,最后得出结论:甲5个项目得第一,1个项目得第三乙1个项目得第一,1个项目得第二,4个项目得第三丙5个项目得第二,1个项目得第三,所以A选项是正确的.【点睛】本题考查了逻辑推理,通过大小关系首先确定的值是解题的关键,意在考查学生的逻辑推断能力.二、填空题:本题共4小题,每小题5分,共20分。13、20【解析】

根据正态分布函数可知,,从而可确定竞赛分数在到分之间的概率为,进而求得参赛学生总数;利用竞赛成绩在分以上所对应的概率可求得获奖学生数.【详解】由题意可得:,若参赛学生的竞赛分数记为,则参赛的学生总数为:人获奖的学生有:人本题正确结果:【点睛】本题考查正态分布的实际应用问题,关键是能够利用原则确定区间所对应的概率,从而求得总数,属于基础题.14、【解析】

根据题意可知在内能成立,利用参变量分离法,转化为在上能成立,令,则将问题转化为,从而得到实数的取值范围.【详解】∵函数,∴在上能成立,∴,令,即为,∵的最大值为,∴,∴实数的取值范围为,故选答案为.【点睛】本题考查了利用导数研究函数的单调性,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.利用导数研究函数存在减区间,经常会运用分离变量,转化为求最值.属于中档题.15、4【解析】

先对函数求导,得到,根据题意,得到,根据等差数列性质,得到,进而可求出结果.【详解】因为,所以,又,是函数的极值点,所以,是方程的两实根,因此,因为数列是正项等差数列,所以,解得,因此.故答案为:.【点睛】本题主要考查由函数极值点求参数,以及等差数列的性质,熟记函数极值点的定义,以及等差数列的性质即可,属于常考题型.16、【解析】略三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】

(1)利用向量的数量积和二倍角公式化简得,故可求其周期与单调性;(2)根据图像过得到,故可求得的大小,再根据数量积得到的乘积,最后结合余弦定理和构建关于的方程即可.【详解】(1),最小正周期:,由得,所以的单调递增区间为;(2)由可得:,所以.又因为成等差数列,所以而,.18、(1)y2=8x.(2)λ=0,或λ=2.【解析】

试题分析:第一问求抛物线的焦点弦长问题可直接利用焦半径公式,先写出直线的方程,再与抛物线的方程联立方程组,设而不求,利用根与系数关系得出x1+x2,然后利用焦半径公式得出焦点弦长公式AB=x1+试题解析:(1)直线AB的方程是y=22(x-p2),与y2=2px联立,消去y得8x2-10px+2p由根与系数的关系得x1+x2=54p.由抛物线定义得|AB|=54(2)由(1)得x2-5x+4=0,得x1=1,x2=4,从而A(1,-22),B(4,42).设OC=(x3,y3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y=8x3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.【点睛】求弦长问题,一般采用设而不求联立方程组,借助根与系数关系,利用弦长公式去求;但是遇到抛物线的焦点弦长问题时,可直接利用焦半径公式,使用焦点弦长公式AB=x1+x2+p,求出弦长.遇到与向量有关的问题,一般采用坐标法去解决,根据联立方程组解出的19、(1)8(2)[-2,0].【解析】

(1)根据函数f(x)最小值是f(﹣1)=0,且c=1,求出a,b,c的值,即可求F(2)+F(﹣2)的值;(2)由于函数f(x)=ax2+bx+c(a>0,b∈R,c∈R),且a=1,c=0,所以f(x)=x2+bx,进而在满足|f(x)|≤1在区间(0,1]恒成立时,求出即可.【详解】(1)由已知c=1,a-b+c=0,且-=-1,解得a=1,b=2,∴f(x)=(x+1)2.∴F(x)=∴F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.(2)由a=1,c=0,得f(x)=x2+bx,从而|f(x)|≤1在区间(0,1]上恒成立等价于-1≤x2+bx≤1在区间(0,1]上恒成立,即b≤-x且b≥--x在(0,1]上恒成立.又-x的最小值为0,--x的最大值为-2.∴-2≤b≤0.故b的取值范围是[-2,0].【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.20、(Ⅰ);(Ⅱ)是【解析】试题分析:(1)由题意,根据两个绝对值式的零点,对的取值范围进行分段求解,综合所有情况,从而可得不等式的解;(2)由不等式的解集为,由(1)作函数图形,结合图形,可直线斜率,从而可求出实数的取值范围,由此问题可得解.试题解析:(1)由已知,可得当时,若,则,解得若,则,解得若,则,解得综上得,所求不等式的解集为;(2)不妨设函数,则其过定点,如图所示,由(1)可得点,由此可得,即.所以,所求实数的范围为.21、(1).(2).(3).【解析】分析:(1)先根据坐标表示向量,,再利用向量数量积求向量夹角,即得异面直线与所成角,(2)先利用方程组解得平面的一个法向量,利用向量数量积得向量夹角余弦值,再根据线面角与向量夹角互余关系得结果,(3)先利用方程组解得平面以及平面的一个法向量,利用向量数量积得法向量夹角余弦值,再根据二面角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论