版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的定义域为,且函数的图象关于轴对称,函数的图象关于原点对称,则()A. B. C. D.2.盒中有只螺丝钉,其中有只是不合格的,现从盒中随机地取出只,那么恰有只不合格的概率是()A. B. C. D.3.若函数且在上既是奇函数又是增函数,则的图象是()A. B.C. D.4.已知,,则函数的零点个数为()A.3 B.2 C.1 D.05.设函数在上存在导函数,对于任意的实数,都有,当时,,若,则实数的取值范围是()A. B. C. D.6.若集合,函数的定义域为集合B,则A∩B等于()A.(0,1)B.[0,1)C.(1,2)D.[1,2)7.函数的单调递增区间是()A. B. C. D.8.已知等差数列{an}的前n项和为Sn,若a5+a7+a9=21,则S13=()A.36 B.72 C.91 D.1829.在如图所示的计算的值的程序框图中,判断框内应填入A. B. C. D.10.如图,网格纸的小正方形的边长是1,粗线表示一正方体被某平面截得的几何体的三视图,则该几何体的体积为A.2 B.4 C.6 D.811.已知,那么()A.20 B.30 C.42 D.7212.阅读如图所示的程序框图,则输出的S等于()A.38 B.40 C.20 D.32二、填空题:本题共4小题,每小题5分,共20分。13.设向量a,b,c满足,,,若,则的值是________14.某晚会安排5个摄影组到3个分会场负责直播,每个摄影组去一个分会场,每个分会场至少安排一个摄影组,则不同的安排方法共有______种(用数字作答).15.=.16.已知实数,满足条件,复数(为虚数单位),则的最小值是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在边长为的正方形中,点是的中点,点是的中点,点是上的点,且.将△AED,△DCF分别沿,折起,使,两点重合于,连接,.(Ⅰ)求证:;(Ⅱ)试判断与平面的位置关系,并给出证明.18.(12分)已知函数.(1)若不等式的解集,求实数的值.(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.19.(12分)某地为了调查市民对“一带一路”倡议的了解程度,随机选取了100名年龄在20岁至60岁的市民进行问卷调查,并通过问卷的分数把市民划分为了解“一带一路”倡议与不了解“一带一路”倡议两类.得到下表:年龄20,3030,4040,5050,60调查人数/名30302515了解“一带一路”倡议/名1228155(I)完成下面的2×2列联表,并判断是否有90%的把握认为以40岁为分界点对“一带一路”倡议的了解有差异(结果精确到0.001);年龄低于40岁的人数年龄不低于40岁的人数合计了解不了解合计(Ⅱ)以频率估计概率,若在该地选出4名市民(年龄在20岁至60岁),记4名市民中了解“一带一路”倡议的人数为X,求随机变量X的分布列,数学期望和方差.附:P0.1500.1000.0500.0250.010k2.0722.7063.8415.0246.635K2=n20.(12分)在中,角,,所对的边分别是,,,已知.(1)求的值;(2)若,,,为垂足,求的长.21.(12分)“DD共享单车”是为城市人群提供便捷经济、绿色低碳的环保出行方式,根据目前在三明市的投放量与使用的情况,有人作了抽样调查,抽取年龄在二十至五十岁的不同性别的骑行者,统计数据如下表所示:男性女性合计20~35岁4010036~50岁4090合计10090190(1)求统计数据表中的值;(2)假设用抽到的100名20~35岁年龄的骑行者作为样本估计全市的该年龄段男女使用“DD共享单车”情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;(3)根据以上列联表,判断使用“DD共享单车”的人群中,能否有的把握认为“性别”与“年龄”有关,并说明理由.参考数表:参考公式:,.22.(10分)在平面直角坐标系中,点到直线:的距离比到点的距离大2.(1)求点的轨迹的方程;(2)请指出曲线的对称性,顶点和范围,并运用其方程说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:根据奇函数与偶函数的定义,可求得函数的解析式;根据解析式确定’的值。详解:令,则,因为为偶函数所以(1),因为为奇函数所以(2)(1)-(2)得(3),令代入得(4)由(3)、(4)联立得代入得所以所以所以选A点睛:本题考查了抽象函数解析式的求解,主要是利用方程组思想确定解析式。方法相对比较固定,需要掌握特定的技巧,属于中档题。2、A【解析】分析:利用古典概型求恰有只不合格的概率.详解:由古典概型公式得故答案为:A.点睛:(1)本题主要考查古典概型,意在考查学生对该知识的掌握水平.(2)古典概型的解题步骤:①求出试验的总的基本事件数;②求出事件A所包含的基本事件数;③代公式=.3、D【解析】
根据题意先得到,,判断其单调性,进而可求出结果.【详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【点睛】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.4、B【解析】
由题意可作出函数f(x)和g(x)的图象,图象公共点的个数即为函数h(x)=f(x)−g(x)的零点个数.【详解】可由题意在同一个坐标系中画出f(x)=2lnx,的图象,其中红色的为f(x)=2lnx的图象,由图象可知:函数f(x)和g(x)的图象有2个公共点,即h(x)=f(x)−g(x)的零点个数为2,故选:B.【点睛】本题考查函数的零点问题,属于函数与方程思想的综合运用,求零点个数问题通常采用数形结合方法,画出图像即可得到交点个数,属于中等题.5、A【解析】
记,由可得,所以为奇函数,又当时,,结合奇函数性质,可得在上单调递减,处理,得,所以,可得出的范围.【详解】解:因为,所以记,则所以为奇函数,且又因为当时,,即所以当时,,单调递减又因为为奇函数,所以在上单调递减若则即所以所以故选:A.【点睛】本题考查了函数单调性与奇偶性的综合运用,利用导数研究函数的单调性,构造函数法解决抽象函数问题,观察结构特点巧妙构造函数是关键.6、D【解析】试题分析:,,所以。考点:1.函数的定义域;2.集合的运算。7、C【解析】
先求得函数的定义域,然后利用导数求得函数的单调递增区间.【详解】依题意,函数的定义域为,,故当时,,所以函数的单调递增区间为,故选C.【点睛】本小题主要考查利用导数求函数的单调递增区间,考查导数的运算,属于基础题.8、C【解析】
根据等差数列的性质求出,根据等差数列的前项和公式可得.【详解】因为{an}为等差数列,所以,所以,所以.故选C.【点睛】本题考查了等差数列的性质、等差数列的前项和.属于基础题.9、D【解析】程序运行过程中,各变量值如下表所示:第一圈:S=0+1,i=5,第二圈:S=1+3,i=9,第三圈:S=1+3+5,i=13,…依此类推,第503圈:1+3+5+…+2013,i=2017,退出循环,其中判断框内应填入的条件是:i⩽2013,本题选择D选项.10、B【解析】
由题意,直观图如图所示,由图可知该几何体的体积为为正方体的一半.【详解】由题意,直观图如图所示,由图可知该几何体的体积为为正方体的一半,即为2×2×2=1.故选B.【点睛】本题考查由三视图求体积,考查学生的计算能力,确定几何体的形状是关键.11、B【解析】
通过计算n,代入计算得到答案.【详解】答案选B【点睛】本题考查了排列数和组合数的计算,属于简单题.12、B【解析】
模拟程序,依次写出各步的结果,即可得到所求输出值.【详解】程序的起始为第一次变为第二次变为第三次变为第四次变为满足条件可得故选:B.【点睛】本题考查程序框图中的循环结构,难度较易.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】∵a+b+c=0,∴c=-(a+b).∵(a-b)⊥c,∴(a-b)·[-(a+b)]=0.即|a|2-|b|2=0,∴|a|=|b|=1,∵a⊥b,∴a·b=0,∴|c|2=(a+b)2=|a|2+2a·b+b2=1+0+1=2.∴|a|2+|b|2+|c|2=4.14、150【解析】
根据题意,先将5个摄影组可分为三队,分队的方式有2种:(1,1,3)和(1,2,2),再进行排列,由分类计数原理计算可得答案.【详解】根据题意,5个摄影组可分为三队,分队的方式有2种:(1,1,3)和(1,2,2),①按(1,1,3)进行分队有种,再分配到3个分会场,共有种;②按(1,2,2)进行分队有种,再分配到3个分会场,共有种;再进行相加,共计60+90=150种,故答案为:150.【点睛】本题考查排列、组合的实际应用问题,考查分类、分步计数原理的灵活应用,属于中等题.15、【解析】令=y≥0,则(y≥0),∴表示的是上半圆在第一象限的部分的面积,其值等于,,所以=+=.考点:定积分.16、【解析】
先作出不等式组对应的区域,再利用复数的几何意义将的最小值转化成定点与区域中的点的距离最小的问题利用图形求解.【详解】如图,作出对应的区域,由于为虚数单位),所以表示点与两点之间的距离,由图象可知的最小值为到直线的距离,即,故答案为.【点睛】本题考查一定点与区域中的一动点距离最值的问题,考查复数的几何意义,利用线性规划的知识进行求解是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】分析:(1)折叠前,,折叠后,,从而即可证明;(2)连接交于,连接,在正方形中,连接交于,从而可得,从而在中,,即得,从而平面.详解:(Ⅰ)证明:∵折叠前,∴折叠后,又∵∴平面,而平面∴.(Ⅱ)平面,证明如下:连接交于,连接,在正方形中,连接交于,则,所以,又,即,在中,,所以.平面,平面,所以平面.点睛:本题主要考查线面之间的平行与垂直关系,注意证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.线面垂直的性质,常用来证明线线垂直.18、(1)(2)【解析】
(1)由根据绝对值不等式的解法列不等式组,结合不等式的解集,求得的值.(2)利用绝对值不等式,证得的最小值为4,由此求得的取值范围.【详解】(1)∵函数,故不等式,即,即,求得.再根据不等式的解集为.可得,∴实数.(2)在(1)的条件下,,∴存在实数使成立,即,由于,∴的最小值为2,∴,故实数的取值范围是.【点睛】本小题主要考查根据绝对值不等式的解集求参数,考查利用绝对值不等式求解存在性问题,考查化归与转化的数学思想方法,属于中档题.19、(Ⅰ)填表见解析,有90%的把握认为以40岁为分界点“一带一路”倡议的了解有差异(Ⅱ)见解析【解析】
(1)由表格读取信息,年龄低于40岁的人数共60人,年龄不低于40岁的人数,代入K2(2)在总体未知的市民中选取4人,每位市民被选中的概率由频率估计概率算出35,所以随机变量X服从二项分布【详解】解:(Ⅰ)根据已知数据得到如下列联表年龄低于40岁的人数年龄不低于40岁的人数合计了解402060不了解202040合计6040100K故有90%的把握认为以40岁为分界点“一带一路”倡议的了解有差异.(Ⅱ)由题意,得市民了解“一带一路”倡议的概率为60100=3PX=0=C40PX=3=C则X的分布列为X01234P169621621681EX=4×3【点睛】本题要注意选取4人是在总体中选,而不是在100人的样本中选,如果看成是在样本中100人选4人,很容易误用超几何分布模型求解.20、(1)(2)【解析】
(1)根据正弦定理化边为角,再根据两角和正弦公式化简得结果,(2)先根据余弦定理求,再利用三角形面积公式求AD.【详解】(1)因为,所以因为,所以,即.因为,所以,所以.则.(2)因为,所以,.在中,由余弦定理可得,即.由,得.所以.【点睛】本题考查正弦定理、余弦定理以及三角形面积公式,考查基本分析求解能力,属中档题.21、(1),.(2);(3)答案见解析.【解析】试题分析:(1)由题意结合题中所给的列联表可得,.(2)由题意结合二项分布的概率公式可得恰有一名女性的概率是;(3)利用独立性检验的结论求得.所以在使用共享单车的人群中,有的把握认为“性别”与“年龄”有关.试题解析:(1),.(2)依题意得,每一次抽到女性的概率,故抽取的3人中恰有一名女性的概率.(3).所以在使用共享单车的人群中,有的把握认为“性别”与“年龄”有关.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能充电桩施工安装服务合同范本4篇
- 2025年中国纱库支架行业市场发展前景及发展趋势与投资战略研究报告
- 2024版研究生实习合同模板2篇
- 2025年度公共安全设施招标文件编制及安全性能评估服务合同3篇
- 狗仔扣钥匙链行业行业发展趋势及投资战略研究分析报告
- 2025年水资源利用项目投产资金借贷合同3篇
- 2025年度个人健康数据共享合同范本3篇
- 2025年度个人农业贷款抵押合同示范文本4篇
- 2025年挖掘机采购与专业人才引进合同3篇
- 2025年度个人入股分红合作开发项目合同4篇
- 机械点检员职业技能知识考试题库与答案(900题)
- 成熙高级英语听力脚本
- 北京语言大学保卫处管理岗位工作人员招考聘用【共500题附答案解析】模拟试卷
- 肺癌的诊治指南课件
- 人教版七年级下册数学全册完整版课件
- 商场装修改造施工组织设计
- (中职)Dreamweaver-CC网页设计与制作(3版)电子课件(完整版)
- 统编版一年级语文上册 第5单元教材解读 PPT
- 中班科学《会说话的颜色》活动设计
- 加减乘除混合运算600题直接打印
- ASCO7000系列GROUP5控制盘使用手册
评论
0/150
提交评论