2023届湖南省衡阳一中数学高二第二学期期末经典模拟试题含解析_第1页
2023届湖南省衡阳一中数学高二第二学期期末经典模拟试题含解析_第2页
2023届湖南省衡阳一中数学高二第二学期期末经典模拟试题含解析_第3页
2023届湖南省衡阳一中数学高二第二学期期末经典模拟试题含解析_第4页
2023届湖南省衡阳一中数学高二第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的部分图象大致是()A. B.C. D.2.执行如图所示的程序框图,若,则输出的为()A. B. C. D.3.已知函数,则=()A. B. C. D.4.若a|a|>b|b|,则下列判断正确的是()A.a>b B.|a|>|b|C.a+b>0 D.以上都有可能5.函数在点处的切线方程为()A. B.C. D.6.下面命题正确的有()①a,b是两个相等的实数,则是纯虚数;②任何两个复数不能比较大小;③若,且,则.A.0个 B.1个 C.2个 D.3个7.函数y=sin2x的图象可能是A. B.C. D.8.已知,、,则向量与的夹角是()A. B. C. D.9.已知函数f(x)=2x3+ax+a.过点M(-1,0)引曲线C:y=f(x)的两条切线,这两条切线与y轴分别交于A,B两点,若|MA|=|MB|,则f(x)A.-324 B.-310.设曲线在点处的切线与直线平行,则()A.B.C.D.11.为了解某校一次期中考试数学成绩情况,抽取100位学生的数学成绩,得如图所示的频率分布直方图,其中成绩分组区间是,则估计该次数学成绩的中位数是()A.71.5 B.71.8 C.72 D.7512.已知关于的方程的两根之和等于两根之积的一半,则一定是()A.直角三角形 B.等腰三角形 C.钝角三角形 D.等边三角形二、填空题:本题共4小题,每小题5分,共20分。13.若,则________14.已知表示两个不同的平面,为平面内的一条直线,则“构成直二面角”是“”的______条件(填“充分不必要”、“必要不充分”、“充要”“或”“既不充分也不必要”).15.把3名辅导老师与6名学生分成3个小组(每组1名教师,2名学生)开展实验活动,但学生甲必须与教师A在一起,这样的分组方法有________种.(用数字作答)16.已知函数f(x)=(x+2013)(x+2015)(x+2017)(x+2019)x∈R,则函数f(x)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求证:18.(12分)设函数在时取得极值.(1)求a的值;(2)求函数的单调区间.19.(12分)小明某天偶然发现班上男同学比女同学更喜欢做几何题,为了验证这一现象是否具有普遍性,他决定在学校开展调查研究:他在全校3000名同学中随机抽取了50名,给这50名同学同等难度的几何题和代数题各一道,让同学们自由选择其中一道题作答,选题人数如下表所示,但因不小心将部分数据损毁,只是记得女生选择几何题的频率是.几何题代数题合计男同学22830女同学合计(1)根据题目信息补全上表;(2)能否根据这个调查数据判断有的把握认为选代数题还是几何题与性别有关?参考数据和公式:0.150.100.050.0250.0100.0052.0722.7063.8415.0246.6357.879,其中.20.(12分)已知函数.(Ⅰ)求函数的最大值;(Ⅱ)已知,求证.21.(12分)已知,R,矩阵的两个特征向量,.(1)求矩阵的逆矩阵;(2)若,求.22.(10分)某种证件的获取规则是:参加科目A和科目B的考试,每个科目考试的成绩分为合格与不合格,每个科目最多只有2次考试机会,且参加科目A考试的成绩为合格后,才能参加科目B的考试;参加某科目考试的成绩为合格后,不再参加该科目的考试,参加两个科目考试的成绩均为合格才能获得该证件.现有一人想获取该证件,已知此人每次参加科目A考试的成绩为合格的概率是,每次参加科目B考试的成绩为合格的概率是,且各次考试的成绩为合格与不合格均互不影响.假设此人不放弃按规则所给的所有考试机会,记他参加考试的次数为X.(1)求X的所有可能取的值;(2)求X的分布列和数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

先判断函数奇偶性,再根据对应区间函数值的正负确定选项.【详解】为偶函数,舍去A;当时,舍去C;当时,舍去D;故选:B【点睛】本题考查函数奇偶性以及识别函数图象,考查基本分析求解判断能力,属基础题.2、B【解析】

执行程序框图,依次写出每次循环得到的的值,当时,不满足条件,退出循环,输出的值.【详解】执行如图所示的程序框图,有满足条件,有,;满足条件,有,;满足条件,有,;满足条件,有,;不满足条件,退出循环,输出的值为本题正确选项:【点睛】本题考查了程序框图和算法的应用问题,是对框图中的循环结构进行了考查,属于基础题.3、C【解析】

由积分运算、微积分基本定理、积分的几何意义分别求出,从而求得.【详解】因为由微积分基本定理得:,由积分的几何意义得:所以,故选C.【点睛】本题考查积分的运算法则及积分的几何意义的运用,考查数形结合思想和运算求解能力.4、A【解析】

利用已知条件,分类讨论化简可得.【详解】因为,所以当时,有,即;当时,则一定成立,而和均不一定成立;当时,有,即;综上可得选项A正确.故选:A.【点睛】本题主要考查不等关系的判定,不等关系一般是利用不等式的性质或者特值排除法进行求解,侧重考查逻辑推理的核心素养.5、B【解析】

首先求出函数在点处的导数,也就是切线的斜率,再利用点斜式求出切线方程..【详解】∵,∴切线斜率,又∵,∴切点为,∴切线方程为,即.故选B.【点睛】本题考查导数的几何意义,属于基础题.6、A【解析】

对于找出反例即可判断,根据复数的性质可判断.【详解】若,则是0,为实数,即错误;

复数分为实数和虚数,而任意实数都可以比较大小,虚数是不可以比较大小的,即错误;

若,,则,但,即错误;故选:A【点睛】本题主要考查了复数的概念与性质,属于基础题.7、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.8、D【解析】

设向量与的夹角为,计算出向量与的坐标,然后由计算出的值,可得出的值.【详解】设向量与的夹角为,,,则,所以,,故选D.【点睛】本题考查空间向量的坐标运算,考查利用向量的坐标计算向量的夹角,考查计算能力,属于中等题.9、A【解析】

设切点的横坐标为t,利用切点与点M连线的斜率等于曲线C在切点处切线的斜率,利用导数建立有关t的方程,得出t的值,再由MA=MB得出两切线的斜率之和为零,于此得出a的值,再利用导数求出函数【详解】设切点坐标为(t,2t3+at+a),∵y'=6解得t=0或t=-32.∵|MA|=|MB|,∴y'则a=-274,f'(x)=6x2-274.当x<-324或x>【点睛】本题考查导数的几何意义,考查利用导数求函数的极值点,在处理过点作函数的切线时,一般要设切点坐标,利用切线与点连线的斜率等于切线的斜率,考查计算能力,属于中等题。10、D【解析】试题分析:由的导数为,则在点处的切线斜率为,由切线与直线平行,所以,故选D.考点:利用导数研究曲线在某点处的切线方程.11、C【解析】的频率为:;的频率为:;的频率为:;的频率为:;的频率为:;的频率为:.所以,得:.的频率和为:.由,得中位数为:.故选C.点睛:用频率分布直方图估计总体特征数字的方法:①众数:最高小长方形底边中点的横坐标;②中位数:平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标;③平均数:频率分布直方图中每个小长方形的面积乘小长方形底边中点的横坐标之和.12、B【解析】分析:根据题意利用韦达定理列出关系式,利用两角和与差的余弦函数公式化简得到A=B,即可确定出三角形形状.详解:设已知方程的两根分别为x1,x2,根据韦达定理得:x1+x2=cosAcosB,x1x2=2sin2=1﹣cosC,∵x1+x2=x1x2,∴2cosAcosB=1﹣cosC,∵A+B+C=π,∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB,∴cosAcosB+sinAsinB=1,即cos(A﹣B)=1,∴A﹣B=0,即A=B,∴△ABC为等腰三角形.故选B.点睛:此题考查了三角形的形状判断,涉及的知识有:根与系数的关系,两角和与差的余弦函数公式,以及二倍角的余弦函数公式,熟练掌握公式是解本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、10【解析】

根据组合数的性质,即可求得的值.【详解】根据组合数的性质所以故答案为:10【点睛】本题考查了组合数的简单性质,属于基础题.14、必要不充分【解析】

根据直二面角的定义、面面垂直的判定理、充分性、必要性的定义可以直接判断.【详解】构成直二面角,说明平面互相垂直,但是不一定成立,比如这两个相交平面的交线显然是平面内的一条直线,它就不垂直于平面;当时,为平面内的一条直线,由面面垂直的判定定理可知:互相垂直,因此构成直二面角,故由可以推出构成直二面角,故“构成直二面角”是“”的必要不充分条件.故答案为:必要不充分【点睛】本题考查了必要不充分条件的判断,考查了面面垂直的判定定理.15、30【解析】

将三名教师命名为A,B,C,按照要求,教师A只需再选一名学生,有5种选法,教师B有种选法,根据分步乘法计数原理,可得分组方法有种.【详解】将三名教师命名为A,B,C,所以可按三步完成分组,第一步让教师A选学生,第二步让教师B选学生,第三步将剩下的学生分配给教师C即可.教师A只需再选一名学生,有5种选法,教师B有种选法,根据分步乘法计数原理,可得分组方法有种.【点睛】本题主要考查分步乘法计数原理的应用.16、-16.【解析】

根据fx解析式的对称性进行换元,令x=t-2016,得到ft-2016的最小值,由fx【详解】令x=t-2016,则f当t2=5故fx的最小值是-16【点睛】本题考查利用换元法求函数的最小值,二次函数求最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析.【解析】试题分析:此题证明可用分析法,寻找结论成立的条件,由于不等式两边均为正,因此只要证,化简后再一次平方可寻找到没有根号,易知显然成立的式子,从而得证.试题解析:证明:因为都是正数,所以为了证明只需证明展开得即因为成立,所以成立即证明了【点睛】(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.18、(1)3;(2)的单调递增区间为;单调递减区间为(1,2).【解析】

(1)根据极值的定义,列出方程,求出的值并进行验证;(2)利用导数的正负求单调区间.【详解】(1),当时取得极值,则,即:,解得:,经检验,符合题意.(2)由(1)得:,∴,令解得:或,令0解得:,∴的单调递增区间为;单调递减区间为.【点睛】若一个函数存大两个或两个以上的单调递增区间或单调递减区间,则在书写时一般是用“,”隔开,或写一个“和”字,而不宜用符号“”连接.19、(1)见解析;(2)有97.5%的把握认为选代数题还是几何题与性别有关【解析】

(1)女生中选几何题的有人,由此补全列联表即可(2)计算的值,对照临界值表下结论即可【详解】(1)由已知女生共20人,所以女生中选几何题的有(人),故表格补全如下:几何题代数题合计男同学22830女同学81220合计302050(2)由列联表知故有97.5%的把握认为选代数题还是几何题与性别有关【点睛】本题考查独立性检验,考查能力,是基础题20、(1).(2)证明见解析.【解析】分析:(Ⅰ)先求导,再利用导数求函数的单调区间,再求函数的最大值.(Ⅱ)利用分析法证明,先转化成证明再构造函数,再求证函数.详解:(I)因为,所以当时;当时,则在单调递增,在单调递减.所以的最大值为.(II)由得,,则,又因为,有,构造函数则,当时,,可得在单调递增,有,所以有.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论