




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二节导数在研究函数中的应用必备知识—基础落实·最新考纲·1.了解函数的单调性和导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不会超过三次).3.了解函数在某点取得的极值的必要条件和充分条件.4.会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).5.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).·考向预测·考情分析:本节一直是高考的重点和难点,一般以基本函数为载体,利用导数研究函数的单调性、极值及最值,求解中多利用分类讨论思想,题型主要以解答题为主,属中高档题.学科素养:通过利用导数研究函数的性质考查数学抽象、数学运算的核心素养.必备知识—基础落实一、必记3个知识点1.函数的导数与单调性的关系函数y=f(x)在某个区间内可导:(1)若f′(x)>0,则f(x)在这个区间内________.(2)若f′(x)<0,则f(x)在这个区间内________.(3)若f′(x)=0,则f(x)在这个区间内____________.单调递增单调递减不具备单调性[提醒]
注意两种表述“函数f(x)在(a,b)上为减函数”与“函数f(x)的减区间为(a,b)”的区别.若所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”或“和”字隔开.2.函数的极值与导数(1)函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值______,而且在x=a附近的左侧________,右侧________,则a点叫做函数的极小值点,f(a)叫做函数的极小值.(2)函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值______,左侧________;右侧________,则b点叫做函数的极大值点,f(b)叫做函数的极大值.都小f′(x)<0f′(x)>0都大f′(x)>0f′(x)<0[提醒]
(1)函数的极值点一定出现在区间的内部,区间的端点不能称为极值点.(2)在函数的整个定义域内,极值不一定是唯一的,有可能有多个极大值或极小值.3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条__________的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的_____.②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[提醒]
极值只能在定义域内部取得,而最值却可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点处必定是极值.连续不断极值二、必明4个常用结论1.f′(x)>0是函数f(x)为增函数的充分不必要条件.2.f′(x)≤0是函数f(x)为减函数的必要不充分条件.3.若函数在开区间(a,b)内的极值点只有一个,则相应极值点为函数最值点.4.若函数在闭区间[a,b]的最值点不是端点,则最值点亦为极值点.三、必练4类基础题(一)判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.(
)(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(
)(3)函数的极大值不一定比极小值大.(
)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(
)(5)函数的极大值一定是函数的最大值.(
)(6)开区间上的单调连续函数无最值.(
)×××√√√(二)教材改编2.[选修2-2·P26练习T2改编]函数f(x)的导函数f′(x)有下列信息:①f′(x)>0时,-1<x<2;②f′(x)<0时,x<-1或x>2;③f′(x)=0时,x=-1或x=2.则函数f(x)的大致图象是(
)答案:C解析:根据信息知,函数f(x)在(-1,2)上是增函数,在(-∞,-1),(2,+∞)上是减函数.3.[选修2-2·P30例5改编]已知函数f(x)=x3-6x2+9x,则f(x)在闭区间[-1,5]上的最小值为______,最大值为________.-1620解析:f′(x)=3x2-12x+9,令f′(x)=0,即x2-4x+3=0,解得x=1或x=3,当-1<x<1或3<x<5时,f′(x)>0,所以f(x)在(-1,1),(3,5)上为增函数,当1<x<3时,f′(x)<0,所以f(x)在(1,3)上为减函数,f(-1)=-16,f(3)=0,f(1)=4,f(5)=20,故f(x)在闭区间[-1,5]上的最小值为-16,最大值为20.(三)易错易混4.(极值点存在的条件不清致误)已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点的个数为(
)
A.1
B.2C.3
D.4答案:A解析:如图,在区间(a,b)内,f′(c)=0,
且在x=c附近的左侧f′(x)<0,右侧f′(x)>0,所以在区间(a,b)内只有1个极小值点.5.(极值点存在的条件不清致误)设a∈R,若函数y=ex+ax有大于零的极值点,则实数a的取值范围是____________.(-∞,-1)解析:∵y=ex+ax,∴y′=ex+a.∵函数
y=ex+ax有大于零的极值点,且函数y′=ex
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农作物种子繁育员考试的心态调整与试题及答案
- 农村生活污水处理设施及配套管网建设项目可行性研究报告(模板)
- 2024年农业植保员考试咨询试题与答案综合解读
- 环保产业园项目可行性研究报告(模板范文)
- 2024年植保员职业能力框架试题及答案
- 用电安全课件教案
- 办公大楼装修工程可行性研究报告(范文)
- 数控技术在模具设计中的作用试题及答案
- 实战演练 2024年篮球裁判员考试试题及答案
- 模具设计师资格考试的核心考点试题及答案
- 缩窄性心包炎的麻醉
- 陶瓷工艺技术研究试题考核试卷
- 铲车维护保养管理制度
- 干好工作18法课件
- 公共卫生工作人员绩效考核评价细则
- 五一劳动节主题班会:树立正确劳动观念弘扬劳动精神-高中专题班会模范课件展示
- 家庭教育指导师模拟题07附有答案
- GB/T 20878-2024不锈钢牌号及化学成分
- 反应釜50L验证方案
- 矿山协议合同范本
- 《运筹学》全套课件(完整版)
评论
0/150
提交评论