2023届湖北省黄冈市浠水县实验高级中学高二数学第二学期期末考试试题含解析_第1页
2023届湖北省黄冈市浠水县实验高级中学高二数学第二学期期末考试试题含解析_第2页
2023届湖北省黄冈市浠水县实验高级中学高二数学第二学期期末考试试题含解析_第3页
2023届湖北省黄冈市浠水县实验高级中学高二数学第二学期期末考试试题含解析_第4页
2023届湖北省黄冈市浠水县实验高级中学高二数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知有穷数列2,3,,满足2,3,,,且当2,3,,时,若,则符合条件的数列的个数是

A. B. C. D.2.设两个正态分布和的密度函数图像如图所示.则有()A.B.C.D.3.若a|a|>b|b|,则下列判断正确的是()A.a>b B.|a|>|b|C.a+b>0 D.以上都有可能4.定义在上的函数,当时,,则函数()的所有零点之和等于()A.2 B.4 C.6 D.85.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.6.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种7.二项式的展开式的各项中,二项式系数最大的项为()A. B.和C.和 D.8.5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为()A.240种 B.120种 C.96种 D.480种9.已知关于的方程的两根之和等于两根之积的一半,则一定是()A.直角三角形 B.等腰三角形 C.钝角三角形 D.等边三角形10.若随机变量服从正态分布在区间上的取值概率是0.2,则在区间上的取值概率约是()A.0.3 B.0.4 C.0.6 D.0.811.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,则与的面积之比为()A. B. C. D.12.已知函数,若关于的方程有两个相异实根,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量X的分布列为P(X=k)=(k=1,2,3,4),则a等于_______.14.中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造.算筹实际上是一根根同样长短的小木棍,用算筹表示数1~9的方法如图:例如:163可表示为“”,27可表示为“”.现有6根算筹,用来表示不能被10整除的两位数,算筹必须用完,则这样的两位数的个数为_________.15.若则的值为_______.16.已知函数是的导函数,若,则的______.(其中为自然对数的底数)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数,,其中,为虚数单位.(1)若复数为纯虚数,求实数的值;(2)在复平面内,若复数对应的点在第四象限,求实数的取值范围.18.(12分)在中,,求的值;若,求的面积.19.(12分)在平面直角坐标系中,曲线的参数方程为(其中为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,试求直线与曲线的交点的直角坐标.20.(12分)三棱柱中,分别是、上的点,且,.设,,.(Ⅰ)试用表示向量;(Ⅱ)若,,,求MN的长..21.(12分)已知函数.(1)当时,求的极值;(2)是否存在实数,使得与的单调区间相同,若存在,求出的值,若不存在,请说明理由;(3)若,求证:在上恒成立.22.(10分))已知.(I)试猜想与的大小关系;(II)证明(I)中你的结论.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

先选出三个数确定为,其余三个数从剩下的7个里面选出来,排列顺序没有特殊要求.【详解】先确定,相当于从10个数值中选取3个,共有种选法,再从剩余的7个数值中选出3个作为,共有种选法,所以符合条件的数列的个数是,故选A.【点睛】本题主要考查利用排列组合的知识确定数列的个数,有无顺序要求,是选择排列还是组合的依据.2、A【解析】根据正态分布函数的性质:正态分布曲线是一条关于对称,在处取得最大值的连续钟形曲线;越大,曲线的最高点越底且弯曲较平缓;反过来,越小,曲线的最高点越高且弯曲较陡峭,选A.3、A【解析】

利用已知条件,分类讨论化简可得.【详解】因为,所以当时,有,即;当时,则一定成立,而和均不一定成立;当时,有,即;综上可得选项A正确.故选:A.【点睛】本题主要考查不等关系的判定,不等关系一般是利用不等式的性质或者特值排除法进行求解,侧重考查逻辑推理的核心素养.4、D【解析】分析:首先根据得到函数关于对称,再根据对称性画出函数在区间上的图像,再根据函数与函数图像的交点来求得函数的零点的和.详解:因为故函数关于对称,令,即,画出函数与函数图像如下图所示,由于可知,两个函数图像都关于对称,两个函数图像一共有个交点,对称的两个交点的横坐标的和为,故函数的个零点的和为.故选D.点睛:本小题主要考查函数的对称性,考查函数的零点的转化方法,考查数形结合的数学思想方法.解决函数的零点问题有两个方法,一个是利用零点的存在性定理,即二分法来解决,这种方法用在判断零点所在的区间很方便.二个是令函数等于零,变为两个函数,利用两个函数图像的交点来得到函数的零点.5、D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.6、C【解析】

根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.7、C【解析】

先由二项式,确定其展开式各项的二项式系数为,进而可确定其最大值.【详解】因为二项式展开式的各项的二项式系数为,易知当或时,最大,即二项展开式中,二项式系数最大的为第三项和第四项.故第三项为;第四项为.故选C【点睛】本题主要考查二项式系数最大的项,熟记二项式定理即可,属于常考题型.8、A【解析】

由题先把5本书的两本捆起来看作一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘即可得答案。【详解】由题先把5本书的两本捆起来看作一个元素共有种可能,这一个元素和其他的三个元素在四个位置全排列共有种可能,所以不同的分法种数为种,故选A.【点睛】本题考查排列组合与分步计数原理,属于一般题。9、B【解析】分析:根据题意利用韦达定理列出关系式,利用两角和与差的余弦函数公式化简得到A=B,即可确定出三角形形状.详解:设已知方程的两根分别为x1,x2,根据韦达定理得:x1+x2=cosAcosB,x1x2=2sin2=1﹣cosC,∵x1+x2=x1x2,∴2cosAcosB=1﹣cosC,∵A+B+C=π,∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB,∴cosAcosB+sinAsinB=1,即cos(A﹣B)=1,∴A﹣B=0,即A=B,∴△ABC为等腰三角形.故选B.点睛:此题考查了三角形的形状判断,涉及的知识有:根与系数的关系,两角和与差的余弦函数公式,以及二倍角的余弦函数公式,熟练掌握公式是解本题的关键.10、A【解析】

根据正态分布曲线的对称性可知,在区间上的取值概率是0.2,可得在区间上的取值概率是0.6,从而可得在区间上的取值概率。【详解】解:据题设分析知,因为随机变量服从正态分布且,根据对称性可得,所求概率,故选A.【点睛】本题考查了正态分布的应用,解题的关键是熟知正态曲线是关于对称,在正态曲线下方和x轴上方范围内的区域面积为1等正态密度曲线图象的特征.11、D【解析】

由题意得出点为的中点,由余弦定理得出,结合三角形面积公式得出正确答案.【详解】,,即点为的中点由余弦定理得:解得:故选:D【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.12、B【解析】分析:将方程恰有两个不同的实根,转化为方程恰有两个不同的实根,在转化为一个函数的图象与一条折线的位置关系,即可得到答案.详解:方程恰有两个不同的实根,转化为方程恰有两个不同的实根,令,,其中表示过斜率为1或的平行折线,结合图象,可知其中折线与曲线恰有一个公共点时,,若关于的方程恰有两个不同的实根,则实数的取值范围是,故选B.点睛:本题主要考查了方程根的存在性及根的个数的判断问题,其中把方程的实根的个数转化为两个函数的图象的交点的个数,作出函数的图象是解答的关键,着重考查了转化思想方法,以及分析问题和解答问题的能力.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】试题分析:.随机变量的取值有1、2、3、4,分布列为:

1

2

3

4

由概率的基本性质知:考点:1、离散型随机变量的分布列.14、16【解析】

根据算筹计数法,需要对不能被10整除的两位数进行分类讨论。可采用列举法写出具体个数【详解】根据算筹计数法中的技术特点,可分为:“1”作十位数:另外五根算筹有两种组合方式,分别为15、19“2”作十位数:另外四根算筹有两种组合方式,分别为24、28“3”作十位数:另外三根算筹有两种组合方式,分别为33、37“4”作十位数:另外两根算筹有两种组合方式,分别为42、46“5”作十位数:另外一根算筹有两种组合方式,分别为51“6”作十位数:另外四根算筹有两种组合方式,分别为64、68“7”作十位数:另外三根算筹有两种组合方式,分别为73、77“8”作十位数:另外两根算筹有两种组合方式,分别为82、86“9”作十位数:另外一根算筹有两种组合方式,分别为91所以这样的两位数的个数共有16个【点睛】本题结合中国古代十进制的算筹计数法,体现了数学与生活的联系,数学服务于生活的思想,对于这种数学文化题型,合理的推理演绎,学会寻找规律规律是解题关键。本题还可采用分析算筹组合特点,先考虑十位数特点,再考虑个位数特点,采用排列组合方式进行求解15、【解析】

由排列数和组合数展开可解得n=6.【详解】由排列数和组合数可知,化简得,所以n=6,经检验符合,所以填6.【点睛】本题考查排列数组合数方程,一般用公式展开或用排列数组合公式化简,求得n,注意n取正整数且有范围限制。16、【解析】

构造函数根据函数单调性解不等式得到答案.【详解】构造函数单调递增.故答案为【点睛】本题考查了函数的导数,利用函数的单调性解不等式,构造函数是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】

利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求解;

求出,再由复数代数形式的加法运算化简,由实部大于0且虚部小于0联立不等式组求解.【详解】(1)由,得,又为纯虚数,所以,且,所以.(2),又复数对应的点在第四象限,所以,且,所以的取值范围是.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数的代数表示法及其几何意义,属于中档题.18、(1);(2).【解析】

由,根据正弦定理可得,从而可求出答案;根据同角的三角函数的关系求出,再根据诱导公式以及两角和正弦公式求出,利用三角形面积公式计算即可.【详解】(1),,由正弦定理可得.(2)若,则,,,又由可得,,.【点睛】本题考查了正弦定理、两角和的正弦公式以及三角形的面积公式,属于基础题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.19、【解析】

将曲线C的参数方程化为普通方程,将直线的极坐标方程化为平面直角坐标方程,联立即可求得直线与曲线C的交点的直角坐标.【详解】将直线的极坐标方程化直角坐标系方程为将曲线的参数方程化为普通方程可得:,由得,解得或,又,所以,所以直线与曲线的交点的直角坐标为.【点睛】该题考查的是有关直线与曲线交点的平面直角坐标的求解问题,涉及到的知识点有参数方程向普通方程的转化,极坐标方程向平面直角坐标方程的转化,直线与曲线交点坐标的求解,属于简单题目.20、(1)(2)【解析】分析:(1)直接利用三角形加法和减法法则得到.(2)先求,再求MN的长.详解:(Ⅰ)(Ⅱ),,.:本题主要考查向量的运算法则和基底法,考查向量的模,意在考查学生对这些知识的掌握水平和分析转化能力.21、(1)极小值为,无极大值(2)不存在满足题意的实数.(3)见证明【解析】

(1)当时,可求导判断单调性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论