版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列结论错误的是()A.命题“若p,则q”与命题“若¬q,则¬p”互为逆否命题B.命题p:,,命题q:,,则“”为真C.“若,则”的逆命题为真命题D.命题P:“,使得”的否定为¬P:“,2.某国际会议结束后,中、美、俄等21国领导人合影留念,他们站成两排,前排11人,后排10人,中国领导人站在前排正中间位置,美俄两国领导人也站前排并与中国领导人相邻,如果对其他国家领导人所站位置不做要求,那么不同的站法共有()A.种 B.种 C.种 D.种3.函数的图象关于点对称,是偶函数,则()A. B. C. D.4.方程表示焦点在轴上的椭圆,则的取值范围是()A. B. C. D.5.设集合,若,则()A.1 B. C. D.-16.以为焦点的抛物线的标准方程是()A. B. C. D.7.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5 B.6 C.7 D.88.下面是列联表:合计2163223557合计56120则表中的值分别为()A.84,60 B.42,64 C.42,74 D.74,429.已知定圆,,定点,动圆满足与外切且与内切,则的最大值为()A. B. C. D.10.唐代诗人杜牧的七绝唐诗中的两句诗为“今来海上升高望,不到蓬莱不成仙。”其中后一句“成仙”是“到蓬莱”的()A.充分非必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件11.在(x-)10的展开式中,的系数是()A.-27 B.27 C.-9 D.912.函数f(x)=的图象大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为___14.若为正实数,则的最大值为_______.15.计算____.16.将5个数学竞赛名额分配给3个不同的班级,其中甲、乙两个班至少各有1个名额,则不同的分配方案和数有__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)函数.(1)当时,求不等式的解集;(2)若不等式的解集为空集,求的取值范围.18.(12分)已知甲、乙、丙、丁、戊、己6人.(以下问题用数字作答)(1)邀请这6人去参加一项活动,必须有人去,去几人自行决定,共有多少种不同的安排方法?(2)将这6人作为辅导员全部安排到3项不同的活动中,求每项活动至少安排1名辅导员的方法总数是多少?19.(12分)已知函数,其中为正实数.(1)若函数在处的切线斜率为2,求的值;(2)求函数的单调区间;(3)若函数有两个极值点,求证:20.(12分)已知.(Ⅰ)计算的值;(Ⅱ)若,求中含项的系数;(Ⅲ)证明:.21.(12分)已知圆C经过P(4,-2),Q(-1,3)两点,且圆心C在直线x+y-1=0上.(1)求圆C的方程;(2)若直线l∥PQ,且l与圆C交于点A,B且以线段AB为直径的圆经过坐标原点,求直线l的方程.22.(10分)在矩形中,,,为线段的中点,如图1,沿将折起至,使,如图2所示.(1)求证:平面平面;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由逆否命题的定义即可判断A;由指数函数的单调性和二次函数的值域求法,可判断B;由命题的逆命题,可得m=0不成立,可判断C;运用命题的否定形式可判断D.【详解】解:命题“若p则q”与命题“若¬q则¬p”互为逆否命题,故A正确;命题,,由,可得p真;命题,,由于,则q假,则“”为真,故B正确;“若,则”的逆命题为“若,则”错误,如果,不成立,故C不正确;命题P:“,使得”的否定为¬P:“,”,故D正确.故选:C.【点睛】本题考查四种命题和命题的否定,考查判断能力和运算能力,属于基础题.2、D【解析】
先排美国人和俄国人,方法数有种,剩下人任意排有种,故共有种不同的站法.3、D【解析】
根据图像关于对称列方程,解方程求得的值.利用列方程,解方程求得的值,由此求得的值.【详解】由于图像关于对称,也即关于的对称点为,故,即,而,故,化简得,故.由于是偶函数,故,即,故.所以,故选D.【点睛】本小题主要考查已知函数的对称性、函数的奇偶性求解析式,属于中档题.4、A【解析】
将椭圆方程化为标准方程,根据题中条件列出关于的不等式,解出该不等式可得出实数的取值范围.【详解】椭圆的标准方程为,由于该方程表示焦点在轴上的椭圆,则,解得,因此,实数的取值范围是,故选A.【点睛】本题考查椭圆的标准方程,考查根据方程判断出焦点的位置,解题时要将椭圆方程化为标准形式,结合条件列出不等式进行求解,考查运算求解能力,属于中等题.5、A【解析】
由得且,把代入二次方程求得,最后对的值进行检验.【详解】因为,所以且,所以,解得.当时,,显然,所以成立,故选A.【点睛】本题考查集合的交运算,注意求出参数的值后要记得检验.6、A【解析】
由题意和抛物线的性质判断出抛物线的开口方向,并求出的值,即可写出抛物线的标准方程.【详解】因为抛物线的焦点坐标是,
所以抛物线开口向右,且=2,
则抛物线的标准方程.
故选:A.【点睛】本题考查抛物线的标准方程以及性质,属于基础题.7、B【解析】试题分析:由题意可知,,,即,,解得.故B正确.考点:1二项式系数;2组合数的运算.8、B【解析】因,故,又,则,应选答案B。9、A【解析】
将动圆的轨迹方程表示出来:,利用椭圆的性质将距离转化,最后利用距离关系得到最值.【详解】定圆,,动圆满足与外切且与内切设动圆半径为,则表示椭圆,轨迹方程为:故答案选A【点睛】本题考查了轨迹方程,椭圆的性质,利用椭圆性质变换长度关系是解题的关键.10、A【解析】
根据命题的“真、假”,条件与结论的关系即可得出选项。【详解】不到蓬莱不成仙,成仙到蓬莱,“成仙”是到“到蓬莱”的充分条件,但“到蓬莱”是否“成仙”不确定,因此“成仙”是“到蓬莱”的充分非必要条件。故选:A【点睛】充分、必要条件有三种判断方法:1、定义法:直接判断“若则”和“若则”的真假。2、等假法:利用原命题与逆否命题的关系判断。3、若,则A是B的充分条件或B是A的必要条件;若,则A是B的充要条件。11、D【解析】试题分析:通项Tr+1=x10-r(-)r=(-)rx10-r.令10-r=6,得r=4.∴x6的系数为9考点:二项式定理12、D【解析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
确定系统抽样间隔k=16,根据样本中含编号为28的产品,即可求解,得到答案.【详解】由系统抽样知,抽样间隔k=80因为样本中含编号为28的产品,则与之相邻的产品编号为12和44,故所取出的5个编号依次为12,28,44,60,1,即最大编号为1.【点睛】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的方法,确定好抽样的间隔是解答的关键,着重考查了运算与求解能力,属于基础题.14、【解析】
设恒成立,可知;将不等式整理为,从而可得,解不等式求得的取值范围,从而得到所求的最大值.【详解】设恒成立,可知则:恒成立即:恒成立,解得:的最大值为:本题正确结果:【点睛】本题考查最值的求解问题,关键是能够将所求式子转化为不等式恒成立的问题,从而构造出不等式求解出的取值范围,从而求得所求最值,属于较难题.15、;【解析】
根据阶乘的定义:,计算得到答案.【详解】.【点睛】本题考查阶乘的计算,考查基本的运算求解能力,要求计算过程耐心、细心,才不会出错.16、10【解析】首先分给甲乙每班一个名额,余下的3个名额分到3个班,每班一个,有1中分配方法;一个班1个,一个班2个,一个班0个,有种分配方法;一个班3个,另外两个班0个有3种分配方法;据此可得,不同的分配方案和数有6+3+1=10种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由得,分,,三种情况讨论,即可得出结果;(2)先由的解集为空集,得恒成立,再由绝对值不等式的性质求出的最大值,即可得出结果.【详解】解:(1)当时,不等式,即,当时,原不等式可化为,即,显然不成立,此时原不等式无解;当时,原不等式可化为,解得;当时,原不等式可化为,即,显然成立,即满足题意;综上,原不等式的解集为;(2)由的解集为空集,得的解集为空集,所以恒成立,因为,所以,所以当且仅当,即时,,所以,解得,即的取值范围是.【点睛】本题主要考查含绝对值不等式,熟记分类讨论的方法以及含绝对值不等式的性质即可,属于常考题型.18、(1)63种不同的去法(2)种【解析】
(1)邀请这6人去参加一项活动,必须有人去,去1,2,3,4,5,6个人,利用组合数求解即可.(2)第一类:6人中恰有4人分配到其中一项活动中,另外两项活动各分一人,第二类:6人中恰有3人分配到其中一项活动中,第三类:6人平均分配到三项活动中,求出方法数,推出结果即可.【详解】(1)由题意,从甲、乙、丙、丁、戊、己6人中,邀请这6人去参加一项活动,必须有人去,共有,故共有63种不同的去法.(2)该问题共分为三类:第一类:6人中恰有4人分配到其中一项活动中,另外两项活动各分一人,共有种;第二类:6人中恰有3人分配到其中一项活动中,共有种;第三类:6人平均分配到三项活动中,共有种,所以每项活动至少安排1名辅导员的方法总数为:种.【点睛】本题主要考查了分类计数原理,以及排列、组合的综合应用,其中正确理解题意,合理分类,正确使用排列、组合求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.19、(1)1;(2)见解析;(3)见解析【解析】试题分析:(1)根据导数几何意义得,解得的值;(2)先求导数,再根据导函数是否变号分类讨论,最后根据导函数符号确定单调区间(3)先根据韦达定理得,再化简,进而化简所证不等式为,最后利用导函数求函数单调性,进而确定最小值,证得结论试题解析:(1)因为,所以,则,所以的值为1.(2),函数的定义域为,若,即,则,此时的单调减区间为;若,即,则的两根为,此时的单调减区间为,,单调减区间为.(3)由(2)知,当时,函数有两个极值点,且.因为要证,只需证.构造函数,则,在上单调递增,又,且在定义域上不间断,由零点存在定理,可知在上唯一实根,且.则在上递减,上递增,所以的最小值为.因为,当时,,则,所以恒成立.所以,所以,得证.20、(Ⅰ)-2019;(Ⅱ)196;(Ⅲ)详见解析.【解析】
(Ⅰ)由于,代入-1即可求得答案;(Ⅱ)由于,利用二项式定理即可得到项的系数;(Ⅲ)可设,找出含项的系数,利用错位相减法数学思想两边同时乘以,再找出含项的系数,于是整理化简即可得证.【详解】解:(Ⅰ)∵,∴;∴;(Ⅱ),中项的系数为;(Ⅲ)设(且)①则函数中含项的系数为,另一方面:由①得:②①-②得:,所以,所以,则中含项的系数为,又因为,,所以,即,所以.【点睛】本题主要考查二项式定理的相关应用,意在考查学生对于赋值法的理解,计算能力,分析能力及逻辑推理能力,难度较大.21、(1)(2)y=-x+4或y=-x-3【解析】
(1)由圆的性质知圆心在线段的垂直平分线上,因此可求得线段的垂直平分线的方程,与方程联立,可求得圆心坐标,再求得半径后可得圆标准方程;(2)设的方程为.代入圆方程,设A(x1,y1),B(x2,y2),则x1+x2=m+1,x1x2=-1.而以线段AB为直径的圆经过坐标原点,则有,即,由此可求得,得直线方程.【详解】(1)∵P(4,-2),Q(-1,3),∴线段PQ的中点M,斜率kPQ=-1,则PQ的垂直平分线方程为,即.解方程组得∴圆心C(1,2),半径.故圆C的方程为.(2)由l∥PQ,设l的方程为.代入圆C的方程,得.设A(x1,y1),B(x2,y2),则x1+x2=m+1,x1x2=-1.故y1y2=(m-x1)(m-x2)=m2+x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育心理学题库检测试卷B卷附答案
- 2023年激光诊断设备资金筹措计划书
- 福建省泉州市高一上学期期末英语试题与参考答案
- 小学幼儿园智慧监控系统方案建议书
- 2024奶牛养殖基地施工承包协议
- 2024暑期工勤工俭学劳动协议示例
- 2024年借款居间协议格式样本
- 2024年度采石场租赁运营权转移协议
- 2024陶瓷烧制加工承揽协议
- 2024专业居间服务借款协议范本
- 踝关节骨折教学查房
- 中华人民共和国民法典(总则)培训课件
- 2023-2024学年湖北省武汉市硚口区八年级(上)期中物理试卷
- 江苏省扬州市江都区2024-2025学年七年级上学期第一次月考数学试卷
- 冬季传染病预防-(课件)-小学主题班会课件
- 2024年安全员A证理论考试1000题及答案
- 《中医基础理论》课程教案
- 《解决问题的策略》(教学设计)-2024-2025学年四年级上册数学苏教版
- 银行保安服务外包采购项目投标方案技术方案(技术方案)
- 社会工作方法 个案工作 个案所需表格
- 小学生家长会课件
评论
0/150
提交评论