版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题是命题“若,则”的否命题;命题:若复数是实数,则实数,则下列命题中为真命题的是()A. B. C. D.2.二项式展开式中常数项等于()A.60 B.﹣60 C.15 D.﹣153.已知随机变量满足,则下列选项正确的是()A. B.C. D.4.已知,是离心率为的双曲线上关于原点对称的两点,是双曲线上的动点,且直线的斜率分别为,,,则的取值范围为()A. B.C. D.)5.函数的定义域为,导函数在内的图象如图所示.则函数在内有几个极小值点()A.1 B.2 C.3 D.46.如图,在正方形中,点E,F分别为边,的中点,将、分别沿、所在的直线进行翻折,在翻折的过程中,下列说法错误是()A.存在某个位置,使得直线与直线所成的角为B.存在某个位置,使得直线与直线所成的角为C.A、C两点都不可能重合D.存在某个位置,使得直线垂直于直线7.已知定义在上的函数满足,且函数在上是减函数,若,,,则,,的大小关系为()A. B. C. D.8.已知直线、经过圆的圆心,则的最小值是A.9 B.8 C.4 D.29.过点且与直线垂直的直线方程是()A. B.C. D.10.下列随机试验的结果,不能用离散型随机变量表示的是()A.将一枚均匀正方体骰子掷两次,所得点数之和B.某篮球运动员6次罚球中投进的球数C.电视机的使用寿命D.从含有3件次品的50件产品中,任取2件,其中抽到次品的件数11.有位同学按照身高由低到高站成一列,现在需要在该队列中插入另外位同学,但是不能改变原来的位同学的顺序,则所有排列的种数为()A. B. C. D.12.某几何体的三视图如图所示,则该几何体的体积为()A. B. C.3 D.二、填空题:本题共4小题,每小题5分,共20分。13.命题“R”,此命题的否定是___.(用符号表示)14.已知棱长为1的正四面体,的中点为D,动点E在线段上,则直线与平面所成角的取值范围为____________;15.一次英语测验由50道选择题构成,每道题有4个选项,其中有且仅有一个是正确的,每个选对得3分,选错或不选均不得分,满分150.某学生选对每一道题的概率均为0.7,则该生在这次测验中的成绩的期望是__________16.从装有3个红球,2个白球的袋中随机取出2个球,设其中有个红球,则为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)用分析法证明:;(2)如果是不全相等的实数,若成等差数列,用反证法证明:不成等差数列.18.(12分)是指悬浮在空气中的空气动力学当量直径小于或等于微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准,日均值在微克/立方米以下,空气质量为一级;在微克应立方米微克立方米之间,空气质量为二级:在微克/立方米以上,空气质量为超标.从某市年全年每天的监测数据中随机地抽取天的数据作为样本,监测值频数如下表:日均值(微克/立方米)频数(天)(1)从这天的日均值监测数据中,随机抽出天,求恰有天空气质量达到一级的概率;(2)从这天的数据中任取天数据,记表示抽到监测数据超标的天数,求的分布列.19.(12分)盒中装有7个零件,其中2个是使用过的,另外5个未经使用.(1)从盒中每次随机抽取1个零件,每次观察后都将零件放回盒中,求3次抽取中恰有1次抽到使用过的零件的概率;(2)从盒中随机抽取2个零件,使用后放回盒中,记此时盒中使用过的零件个数为X,求X的分布列和数学期望.20.(12分)三棱柱中,分别是、上的点,且,.设,,.(Ⅰ)试用表示向量;(Ⅱ)若,,,求MN的长..21.(12分)某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为,且甲、乙两人是否答对每个试题互不影响.(1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为,求的分布列及数学期望和方差.22.(10分)已知(a∈R).(1)当时,判断f(x)在定义域上的单调性;(2)若f(x)在[1,e]上的最小值为,求a的值;(3)若f(x)<x2在(1,+∞)上恒成立,试求
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:先判断命题p,q的真假,再判断选项的真假.详解:由题得命题p:若a>b,则,是假命题.因为是实数,所以所以命题q是假命题,故是真命题.故答案为D.点睛:(1)本题主要考查四个命题和复数的基本概念,考查复合命题的真假,意在考查学生对这些知识的掌握水平.(2)复合命题的真假判断口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.2、A【解析】
化简二项式展开式的通项公式,由此计算的系数,从而得出正确选项.【详解】当时,即,故常数项为,选A.【点睛】本小题主要考查二项式展开式的通项公式,考查运算求解能力,属于基础题.3、B【解析】
利用期望与方差性质求解即可.【详解】;.故,.故选.【点睛】考查期望与方差的性质,考查学生的计算能力.4、B【解析】
因为M,N关于原点对称,所以设其坐标,然后再设P坐标,将表示出来.做差得,即有,最后得到关于的函数,求得值域.【详解】因为双曲线的离心率,所以有,故双曲线方程即为.设M,N,P的坐标分别是,则,并且做差得,即有,于是有因为的取值范围是全体实数集,所以或,即的取值范围是,故选B.【点睛】本题考查双曲线的性质,有一定的综合性和难度.5、A【解析】
直接利用极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,再结合图像即可得出结论.【详解】因为极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,由图得:导函数值先负后正的点只有一个,故函数在内极小值点的个数是1.故选:A【点睛】本题考查了极小值点的概念,需熟记极小值点的定义,属于基础题.6、D【解析】
在A中,可找到当时,直线AF与直线CE垂直;在B中,由选项A可得线AF与直线CE所成的角可以从到,自然可取到;在C中,若A与C重合,则,推出矛盾;在D中,若AB⊥CD,可推出则,矛盾.【详解】解:将DE平移与BF重合,如图:在A中,若,又,则面,则,即当时,直线AF与直线CE垂直,故A正确;
在B中,由选项A可得线AF与直线CE所成的角可以从到,必然会存在某个位置,使得直线AF与直线CE所成的角为60°,故B正确;在C中,若A与C重合,则,不符合题意,则A与C恒不重合,故C正确;
在D中,,又CB⊥CD,则CD⊥面ACB,所以AC⊥CD,即,又,则,矛盾,故D不成立;
故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.7、B【解析】
利用函数奇偶性和单调性可得,距离y轴近的点,对应的函数值较小,可得选项.【详解】因为函数满足,且函数在上是减函数,所以可知距离y轴近的点,对应的函数值较小;,且,所以,故选B.【点睛】本题主要考查函数性质的综合应用,侧重考查数学抽象和直观想象的核心素养.8、A【解析】
由圆的一般方程得圆的标准方程为,所以圆心坐标为,由直线过圆心,将圆心坐标代入得,所以,当且仅当时,即时,等号成立,所以最小值为1【详解】圆化成标准方程,得,圆的圆心为,半径.直线经过圆心C,,即,因此,,、,,当且仅当时等号成立.由此可得当,即且时,的最小值为1.故选A.【点睛】若圆的一般方程为,则圆心坐标为,半径9、B【解析】
先求出所求直线的斜率,再写出直线的点斜式方程化简整理即得解.【详解】由题得直线的斜率为所以直线的方程为,即:故选B【点睛】本题主要考查相互垂直的直线的斜率关系,考查直线方程的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.10、C【解析】分析:直接利用离散型随机变量的定义逐一判断即可.详解:随机取值的变量就是随机变量,随机变量分为离散型随机变量与连续型随机变量两种,随机变量的函数仍为随机变量,有些随机变量,它全部可能取到的不相同的值是有限个或可列无限多个,这种随机变量称为“离散型随机变量”,题目中都属于离散型随机变量,而电视机的使用寿命属于连续型随机变量,故选C.点睛:随机取值的变量就是随机变量,随机变量分为离散型随机变量与连续型随机变量两种(变量分为定性和定量两类,其中定性变量又分为分类变量和有序变量;定量变量分为离散型和连续型),随机变量的函数仍为随机变量,本题考的离散型随机变量.11、C【解析】
将问题转化为将这个同学中新插入的个同学重新排序,再利用排列数的定义可得出答案.【详解】问题等价于将这个同学中新插入的个同学重新排序,因此,所有排列的种数为,故选C.【点睛】本题考查排列问题,解题的关键就是将问题进行等价转化,考查转化与化归数学思想的应用,属于中等题.12、D【解析】分析:作出三视图的直观图,然后根据组合体计算体积即可.详解:如图所示:由一个三棱柱截取G-DEF三棱锥后所剩下的图形,故该几何体的体积为:,故答案为选D.点睛:考查三视图还原为直观图后求解体积的计算,对直观图的准确还原是解题关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、∀x∈R,x2+x≤1.【解析】
直接利用特称命题的否定是全称命题写出结果即可.【详解】因为特称命题的否定是全称命题,所以∃x1∈R,x12﹣2x1+1>1的否定是:∀x∈R,x2+x≤1.故答案为:∀x∈R,x2+x≤1.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系及否定形式,属于基本知识的考查.14、;【解析】
当与重合时,直线与平面所成角为0最小,当从向移动时,直线与平面所成角逐渐增大,到达点时角最大.【详解】如图,是在底面上的射影,是在底面上的射影,由于是中点,则是中点,正四面体棱长为1,则,,,,,∴,,∴..∴所求角的范围是.故答案为.【点睛】本题考查直线与平面所成的角,解题时首先要作出直线与平面所成的角,同时要证明所作角就是要求的角,最后再计算,即一作二证三计算.15、105.【解析】分析:先判断概率分别为二项分布,再根据二项分布期望公式求结果.详解:因为,所以点睛:16、【解析】分析:由题意,从装有个红球和个白球的袋中随机取出个球的取法,再求得当个球都是红球的取法,利用古典概型的概率计算公式,即可得到答案.详解:由题意,从装有个红球和个白球的袋中随机取出个球,共有种方法,其中当个球都是红球的取法有种方法,所以概率为.点睛:本题主要考查了古典概型及其概率的计算公式的应用,其中概率排列、组合的知识得到基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】分析:(1)利用分析法证明,平方、化简、再平方,可得显然成立,从而可得结果;(2)假设成等差数列,可得,结合可得,与是不全相等的实数矛盾,从而可得结论.详解:(1)欲证只需证:即只需证:即显然结论成立故(2)假设成等差数列,则由于成等差数列,得①那么,即②由①、②得与是不全相等的实数矛盾.故不成等差数列.点睛:本题主要考查反证法的应用以及利用分析法证明不等式,属于难题.分析法证明不等式的主要事项:用分析法证明不等式时,不要把“逆求”错误的作为“逆推”,分析法的过程仅需寻求充分条件即可,而不是充要条件,也就是说,分析法的思维是逆向思维,因此在证题时,应正确使用“要证”、“只需证”这样的连接关键词.18、(1);(2)分布列见解析.【解析】
(1)由表格可知:这天的日均值监测数据中,只有天达到一级,然后利用组合计数原理与古典概型的概率公式可计算出所求事件的概率;(2)由题意可知,随机变量的可能取值有、、、,然后利用超几何分布即可得出随机变量的分布列.【详解】(1)由表格可知:这天的日均值监测数据中,只有天达到一级.随机抽取天,恰有天空气质量达到一级的概率为;(2)由题意可知,随机变量的可能取值有、、、,,,,.因此,随机变量的分布列如下表所示:【点睛】本题考查了概率的计算,同时也考查了超几何分布及其分布列等基础知识与基本技能,属于中档题.19、(1)3次抽取中恰有1次抽到使用过的零件的概率p=150(2)随机变量X的分布列为:X
2
3
4
P
12110211021EX=24【解析】试题分析:(1)这是一个有放回地抽取的问题,可以看作独立重复试验的概率问题.首先求出“从盒中随机抽取1个零件,抽到的是使用过的零件”的概率,然后用独立重复事件的概率公式便可求得“3次抽取中恰有1次抽到使用过的零件”的概率.(2)7个零件中有2个是使用过的,再抽取2个使用后再放回,则最多有4个是使用过的,最少有2个是使用过的,所以随机变量X的所有取值为2,3,4.“X=2”表示抽取的2个都是使用过的,“X=3”表示抽取的2个中恰有1个是使用过的,“X=4”表示抽取的2个都是未使用过的,这是一个超几何分布问题,由超几何分布的概率公式可求得随机变量X的分布列.试题解析:(1)记“从盒中随机抽取1个零件,抽到的是使用过的零件”为事件A,则P(A)=2所以3次抽取中恰有1次抽到使用过的零件的概率P=C(2)随机变量X的所有取值为2,3,4.P(X=2)=C22P(X=4)=C所以,随机变量X的分布列为:X
2
3
4
P
12110211021EX=2×1考点:1、独立重复试验的概率;2、超几何分布;3、随机变量的分布列.20、(1)(2)【解析】分析:(1)直接利用三角形加法和减法法则得到.(2)先求,再求MN的长.详解:(Ⅰ)(Ⅱ),,.:本题主要考查向量的运算法则和基底法,考查向量的模,意在考查学生对这些知识的掌握水平和分析转化能力.21、(1)甲通过自主招生初试的可能性更大.(2)见解析,,.【解析】
(1)分别利用超几何概型和二项分布计算甲、乙通过自主招生初试的概率即可;(2)乙答对题的个数服从二项分布,利用二项分布的公式,计算概率,再利用,即得解.【详解】解:(1)参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试,在这8个试题中甲能答对6个,甲通过自主招生初试的概率参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试.在这8个试题中乙能答对每个试题的概率为,乙通过自主招生初试的概率,甲通过自主招生初试的可能性更大.(2)根据题意,乙答对题的个数的可能取值为0,1,2,3,4.且的概率分布列为:05101520.【点睛】本题考查了超几何分布和二项分布的概率和分布列,考查了学生实际应用,转化划归,数学运算的能力,属于中档题.22、(1)见解析;(2)a=-e【解析】分析:(1)f(x)的定义域为(0,+∞),f′(x)=+=,由此利用导数性质能求出f(x)在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四年级下册语文教学计划
- 2024年消防安全技术咨询与支持协议3篇
- 供气技术可行性分析
- 沪教版九年级化学第7章教学案724常见的酸和碱
- 2024-2025学年九年级上学期期末素养综合测试【后附答案解析】
- 2024年环保印刷材料绿色采购合作协议范本3篇
- 2024年绿色环保门窗生产及安装劳务分包协议3篇
- 2024年旅游服务质量纠纷诉前财产保全担保合同2篇
- 2024年汽车修理厂租赁经营及维修服务合同3篇
- 2024年度企业信息安全防护解决方案开发合同3篇
- 期末卷(一)(试题)-2024-2025学年五年级上册语文统编版
- 2024年小区居民活动中心建设实施方案
- 2025届新高考英语热点冲刺复习语法填空
- 乐器维修保养行业三年发展洞察报告
- 四川省泸州市高2023级高一学年末统一考试+政治试卷
- 中储粮社招考试题库
- 苏州市昆山市部分学校2023~2024高二下学期综合能力测评数学试卷及答案
- 中国蚕丝绸文化智慧树知到答案2024年浙江大学
- 职业技术学院《客房服务与数字化运营》课程标准
- 2024年贵州事业单位真题
- API SPEC Q1 CHINESE 2023 石油天然气行业产品供应组织质量管理体系规范
评论
0/150
提交评论