2022-2023学年江苏省无锡市青阳初级中学数学八下期末检测试题含解析_第1页
2022-2023学年江苏省无锡市青阳初级中学数学八下期末检测试题含解析_第2页
2022-2023学年江苏省无锡市青阳初级中学数学八下期末检测试题含解析_第3页
2022-2023学年江苏省无锡市青阳初级中学数学八下期末检测试题含解析_第4页
2022-2023学年江苏省无锡市青阳初级中学数学八下期末检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,反比例函数的图象经过,两点,,两点的纵坐标分别为3,1,若的中点为点,则点向左平移________个单位后落在该反比例函数图象上?()A. B.2 C.1 D.2.一次函数y=-3x+2的图象不经过()A.第四象限 B.第三象限 C.第二象限 D.第一象限3.一次函数的图象如图所示,则不等式的解集是()A. B. C. D.4.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下列叙述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.点D是线段AC的中点 D.AD=BD=BC5.下列各式:,,,,(x+y)中,是分式的共有()A.1个 B.2个 C.3个 D.4个6.在△ABC中,AB=,BC=,AC=,则()A.∠A=90° B.∠B=90° C.∠C=90° D.∠A=∠B7.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形8.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A. B.C. D.9.下列事件为随机事件的是()A.367人中至少有2人生日相同 B.打开电视,正在播广告C.没有水分,种子发芽 D.如果、都是实数,那么10.点在第象限.A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知将直线y=x+1向下平移3个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限 B.与x轴交于(2,0)C.与直线y=2x+1平行 D.y随的增大而减小12.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,作BF⊥AM于点F,连接BE.若AF=1,四边形ABED的面积为6,则BF的长为()A.2 B.3 C. D.二、填空题(每题4分,共24分)13.已知关于X的一元二次方程有实数根,则m的取值范围是____________________14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是_____cm1.15.如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为_____.16.若是一个完全平方式,则的值等于_________.17.当二次根式的值最小时,x=______.18.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是______三、解答题(共78分)19.(8分)如图,AC、BD相交于点O,且O是AC、BD的中点,点E在四边形ABCD外,且∠AEC=∠BED=90°,求证:边形ABCD是矩形.20.(8分)先化简,再求值:1-÷其中a=2020,b=2019.21.(8分)已知一次函数的图象经过点,且与正比例函数的图象相交于点(1)求a的值;(2)求出一次函数的解析式;(3)求的面积.22.(10分)如图,在正方形内任取一点,连接,在⊿外分别以为边作正方形和.⑴.按题意,在图中补全符合条件的图形;⑵.连接,求证:⊿≌⊿;⑶.在补全的图形中,求证:∥.23.(10分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,.若,则正方形EFGH的面积为_______.24.(10分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.(1)求证:四边形ABCD是矩形;(2)若DE=3,OE=9,求AB、AD的长;25.(12分)如图,,点分别在线段上,且求证:已知分别是的中点,连结①若,求的度数:②连结当的长为何值时,四边形是矩形?26.矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据题意可以推出A,B两点的坐标,由此可得出M点的坐标,设平移n个单位,然后表示出平移后的坐标为(2-n,2),代入函数解析式,即可得到答案.【详解】由题意可得A(1,3),B(3,1),∴M(2,2),设M点向左平移n个单位,则平移后的坐标为(2-n,2),∴(2-n)×2=3,∴n=.故选:D.【点睛】本题主要考查了中点坐标的计算,反比例函数,细心分析即可.2、B【解析】

根据一次函数的图像与性质,结合k=-3<0,b=2>0求解即可.【详解】∵k=-3<0,b=2>0,∴一次函数y=-3x+2的图象经过一二四象限,不经过第三象限.故选B.【点睛】题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.3、D【解析】

写出函数图象在x轴下方所对应的自变量的范围即可.【详解】当x>-1时,y<0,

所以不等式kx+b<0的解集是x>-1.

故选:D.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.4、C【解析】分析:由△ABC中,AB=AC,∠A=36°,可求得∠ABC与∠C的度数,又由AB的垂直平分线DE交AC于D,交AB于E,根据线段垂直平分线的性质,可证得AD=BD,继而可求得∠ABD,∠DBC的度数,则可得BD平分∠ABC;又可求得∠BDC的度数,则可证得AD=BD=BC;可求得△BDC的周长等于AB+BC.详解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=(180°-36°)÷2=72°,∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC-∠ABD=36°=∠ABD,∴BD平分∠ABC;故A正确;∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故D正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故B正确;∵AD=BD>CD,∴D不是AC的中点,故C错误.故选C.点睛:此题考查了线段垂直平分线的性质与等腰三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.5、C【解析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】,,分母中含有字母,因此是分式;,的分母中均不含有字母,因此它们是整式,而不是分式.故分式有3个.故选C.【点睛】本题主要考查了分式的定义,注意判断一个式子是否是分式的条件是:分母中是否含有未知数,如果不含有字母则不是分式.6、A【解析】试题解析:∵在△ABC中,AB=,BC=,AC=,∴∴∠A=90°故选A.7、B【解析】

依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8、C【解析】

根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.【详解】∵小李距家3千米,∴离家的距离随着时间的增大而增大.∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合.故选C.【点睛】本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.9、B【解析】

根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.367人中至少有2人生日相同,是必然事件,故A不符合题意;B.打开电视,正在播广告,是随机事件,故B符合题意;C.没有水分,种子发芽,是不可能事件,故C不符合题意;D.如果、都是实数,那么,是必然事件,故D不符合题意.故选B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、A【解析】

根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.11、B【解析】

利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【详解】将直线y=x+1向下平移3个单位长度后得到直线y=x+1-3=x-2,

A、直线y=x-2经过第一、三、四象限,故本选项错误;

B、直线y=x-2与x轴交于(2,0),故本选项正确;

C、直线y=x-2与直线y=2x+1相交,故本选项错误;

D、直线y=x-2,y随x的增大而增大,故本选项错误;

故选:B.【点睛】考查了一次函数图象与几何变换,正确把握变换规律是解题关键.12、B【解析】

先证明ΔABF≌ΔDAE得到BF=AE,设BF=x,则AE=x,DE=AF=1,利用四边形ABED的面积=得,解之即可求得BF的长.【详解】∵四边形ABCD是正方形,∴BA=AD,∠BAD=90º,∴∠DAE+∠BAF=90º,∵BF⊥AM,DE⊥AM,∴∠AFB=∠DEA=90º,∴∠ABF+∠BAF=90º,∴∠ABF=∠DAE,在ΔABF和ΔDAE中∴ΔABF≌ΔDAE(AAS),∴BF=AE,DE=AF=1设BF=x,则AF=x,由四边形ABED的面积为6得:,即,解得:(舍去),∴BF=3,故选:B.【点睛】本题主要考查正方形的性质、三角形面积公式以及全等三角形的判定,熟练运用全等三角形的知识是解答的关键.二、填空题(每题4分,共24分)13、m≤3且m≠2【解析】试题解析:∵一元二次方程有实数根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.14、2.【解析】试题分析:根据菱形的面积等于对角线乘积的一半解答.试题解析:∵AC=4cm,BD=8cm,∴菱形的面积=×4×8=2cm1.考点:菱形的性质.15、2【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=(AC+CP),∴OC=CE=(AC+CP),当AC=2,CP=CD=1时,OC=×(2+1)=,当AC=2,CP=CB=5时,OC=×(2+5)=,∴当P从点D出发运动至点B停止时,点O的运动路径长=-=2.故答案为2.点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.16、【解析】

根据完全平方公式的特点即可求解.【详解】∵是完全平方式,即为,∴.故答案为.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.17、1.【解析】

直接利用二次根式的定义分析得出答案.【详解】∵二次根式的值最小,∴2x﹣6=0,解得:x=1,故答案为1.【点睛】本题主要考查了二次根式的定义,正确把握定义是解题关键.18、x>1【解析】分析:根据两直线的交点坐标和函数的图象即可求出答案.详解:∵直线y1=kx+b与直线y2=mx交于点P(1,m),

∴不等式mx>kx+b的解集是x>1,

故答案为x>1.点睛:解答本题的关键是熟练掌握图象在上方的部分对应的函数值大,图象在下方的部分对应的函数值小.三、解答题(共78分)19、见解析.【解析】

连接EO,首先根据O为BD和AC的中点,得出四边形ABCD是平行四边形,在Rt△AEC中EO=12AC,在Rt△EBD中,EO=12BD,得到【详解】解:连接EO如图所示:∵O是AC、BD的中点,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,在RtΔEBD中,∵O为BD中点,∴EO=1在RtΔAEC中,∵O为AC中点,∴EO=1∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.【点睛】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.20、;2019.【解析】

先把分子、分母因式分解,再按照分式的除法法则计算、约分,最后通分,按照分式减法法则计算化简,把a、b的值代入求值即可得答案.【详解】原式=1-÷=1-×=-=.当a=2020,b=2019时,原式==2019.【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算运算法则是解题关键.21、(1)1(2)(3)【解析】

(1)将点B代入正比例函数即可求出a的值;(2)将点A、B代入一次函数,用待定系数法确定k,b的值即可;(3)可将分割成两个三角形求其面积和即可.【详解】(1)依题意,点在正比例函数的图象上,所以,(2)依题意,点A、B在一次函数图象上,所以,,解得:,.一次函数的解析式为:,(3)直线AB与y轴交点为,的面积为:【点睛】本题考查了一次函数与反比例函数的综合,待定系数法求一次函数解析式是解题的关键,对于一般的三角形不易直接求面积时,可将其分割成多个易求面积的三角形.22、(1)补全图形见解析;(2)证明见解析;(3)证明见解析.【解析】分析:⑴问要注意“在⊿外”作正方形;本题的⑵问根据正方形的性质得出的结论为三角形全等提供条件,比较简单;本题额⑶问可以连接正方形的对角线后,然后利用“内错角相等,两直线平行.”来证明.详解:⑴.如图1,在⊿外分别以为边作正方形和.(要注意是在“⊿外”作正方形,见图1)⑵.在图1的基础上连接.∵四边形、和都是正方形∴∴∴∴⊿≌⊿()⑶.继续在图1的基础上连接.(见图2)∵四边形是正方形,且已证∴∴∵⊿≌⊿∴∴∴即∴∥.点睛:本题的⑴问要注意的是在“在⊿外”作正方形,所以不要作在三角形内部;本题的⑵问主要是利用正方形提供的条件来证明两个三角形全等,比较简单,常规证法;本题的⑶问巧妙利用与正方形的对角线构成的内错角来提供平行的条件,需正方形和全等三角形来综合提供.23、1【解析】

设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,构建方程组,利用整体的思想思考问题,求出x+4y即可.【详解】解:设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,

∵正方形MNKT,正方形EFGH,正方形ABCD的面积分别为S1,S2,S3,S1+S2+S3=18,

∴得出S1=x,S2=4y+x,S3=8y+x,

∴S1+S2+S3=3x+12y=18,故3x+12y=18,

x+4y=1,

所以S2=x+4y=1,即正方形EFGH的面积为1.

故答案为1【点睛】本题考查勾股定理的证明,正方形的性质、全等三角形的性质等知识,解题的关键是学会利用参数,构建方程组解决问题.24、(1)见解析;(2)AB、AD的长分别为3和1【解析】

(1)根据全等三角形的判定和性质以及矩形的判定解答即可;

(2)根据全等三角形的性质和勾股定理解答即可.【详解】证明:(1)∵AB⊥OM于B,DE⊥ON于E,∴∠ABO=∠DEA=90°.在Rt△ABO与Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL)∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=3,设AD=x,则OA=x,AE=OE﹣OA=9﹣x.在Rt△DEA中,由AE2+DE2=AD2得:(9﹣x)2+32=x2,解得x=1.∴AD=1.即AB、AD的长分别为3和1.【点睛】此题考查矩形的判定与性质以及勾股定理.注意利用勾股定理求线段AD的长是解题关键.25、(1)详情见解析;(2)①15°,②【解析】

(1)通过证明△ABD≅△ACE进一步求证即可;(2)①连接AF、AG,利用直角三角形斜边的中线等于斜边的一半求出AF=BD=BF,AG=CE=GC,由此进一步证明△AFG为等边三角形,最后利用△ABF≅△ACG进一步求解即可;②连接BC,再连接EF、DG并延长分别交BC于点M、N,首先根据题意求得BM=DE=NC,然后利用△ABC~△AED进一步求解即可.【详解】(1)在△ABD与△ACE中,∵AB=AC,∠A=∠A,AD=AE,∴△ABD≅△ACE(SAS),∴BD=CE;(2)①连接AF、AG,∵AF、AG分别为Rt△ABD、Rt△ACE的斜边中线,∴AF=BD=BF,AG=CE=GC,又∵BD=CE,FG=BD,∴AF=AG=FG,∴△AFG为等边三角形,易证△ABF≅△ACG(SSS),∴∠BAF=∠B=∠C=∠CAG,∴∠C=15°;②连接BC、DE,再连接EF、DG并延长分别交BC于点M、N,∵△ABC与△AED都是等腰直角三角形,∴DE∥BC,∵F、G分别是BD、CE的中点,∴易证△DEF≅△BMF,△DEG≅△NCG(ASA),∴BM=DE=NC,若四边形DEFG为矩形,则DE=FG=MN,∴,∵DE∥BC,∴△ABC~△AED,∴,∵AC=4,∴AD=,∴当AD的长为时,四边形DEFG为矩形.【点睛】本题主要考查了全等三角形性质与判定和相似三角形性质与判定及直角三角形性质和矩形性质的综合运用,熟练掌握相关概念是解题关键.26、(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,)【解析】

(1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解;(2)分CG=EG、CE=GE、CE=CG三种情况分别求解;(3)①由点P为矩形ABCO的对称中心,得到求得直线PB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论