版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是双曲线:上的一点,,是的两个焦点,若,则的取值范围是()A. B. C. D.2.若,则的取值范围为()A. B. C. D.3.已知随机变量服从的分布列为123…nP…则的值为()A.1 B.2 C. D.34.某班数学课代表给全班同学出了一道证明题.甲说:“丙会证明.”乙说:“我不会证明.”丙说:“丁会证明.”丁说:“我不会证明.”以上四人中只有一人说了真话,只有一人会证明此题.根据以上条件,可以判定会证明此题的人是()A.甲 B.乙 C.丙 D.丁5.下列命题中真命题的个数是()①若样本数据,,…,的方差为16,则数据,,…,的方差为64;②“平面向量,夹角为锐角,则”的逆命题为真命题;③命题“,”的否定是“,”;④若:,:,则是的充分不必要条件.A.1 B.2 C.3 D.46.设,,,则A. B. C. D.7.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为和,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140分以上的概率为()A. B. C. D.8.已知,则的值()A.都大于1 B.都小于1C.至多有一个不小于1 D.至少有一个不小于19.设全集,集合,,则()A. B. C. D.10.5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为()A.240种 B.120种 C.96种 D.480种11.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x34y12对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是A. B. C. D.12.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若与的夹角为,,,则________.14.若的展开式中含项的系数为,则__________.15.关于的不等式恒成立,则的取值范围为________16.曲线在处的切线方程是_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,侧棱垂直于底面,,,,,E为的中点,过A、B、E的平面与交于点F.(1)求证:点F为的中点;(2)四边形ABFE是什么平面图形?并求其面积.18.(12分)某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为,且各个水果是否为不合格品相互独立.(Ⅰ)记10个水果中恰有2个不合格品的概率为,求取最大值时p的值;(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的作为p的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a元的赔偿费用.(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?19.(12分)已知,:,:.(I)若是的充分条件,求实数的取值范围;(Ⅱ)若,“或”为真命题,“且”为假命题,求实数的取值范围20.(12分)已知椭圆的离心率为,,分别是其左、右焦点,且过点.(1)求椭圆的标准方程;(2)若在直线上任取一点,从点向的外接圆引一条切线,切点为.问是否存在点,恒有?请说明理由.21.(12分)某理财公司有两种理财产品A和B,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):产品A投资结果获利40%不赔不赚亏损20%概率产品B投资结果获利20%不赔不赚亏损10%概率pq注:p>0,q>0(1)已知甲、乙两人分别选择了产品A和产品B投资,如果一年后他们中至少有一人获利的概率大于,求实数p的取值范围;(2)若丙要将家中闲置的10万元人民币进行投资,以一年后投资收益的期望值为决策依据,则选用哪种产品投资较理想?22.(10分)足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:年份x20142015201620172018足球特色学校y(百个)0.300.601.001.401.70(1)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱.(已知:,则认为y与x线性相关性很强;,则认为y与x线性相关性一般;,则认为y与x线性相关性较):(2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).参考公式和数据:,,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题知,,所以==,解得,故选A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.2、D【解析】
由,得,设,,当时,递减;当时,递增,,,故选D.【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题.不等式恒成立问题常见方法:①分离参数恒成立(可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数.本题是利用方法①求得的范围.3、A【解析】
由概率之和为1,列出等式,即可求得k值.【详解】由概率和等于1可得:,即.故选A.【点睛】本题考查分布列中概率和为1,由知识点列式即可得出结论.4、B【解析】如果甲会证明,乙与丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意;排除选项;如果丙会证明,甲乙丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项;如果丁会证明,丙乙都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项,故选B.5、C【解析】分析:对四个命题逐一分析即可.详解:对于①,由方差的性质得:则数据,,…,的方差为,故正确;对于②,逆命题为平面向量,满足,则向量,夹角为锐角,是假命题,故错误;对于③,命题“,”的否定是“,”,正确;对于④,,,是的充分不必要条件,故正确.故选C.点睛:本题主要考查命题的真假判断,涉及知识点较多,综合性较强,但难度不大.6、D【解析】
依换底公式可得,从而得出,而根据对数函数的单调性即可得出,从而得出,,的大小关系.【详解】由于,;,又,.故选.【点睛】本题主要考查利用对数函数的单调性比较大小以及换底公式的应用.7、A【解析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140分以上的概率为甲考140分以上乙未考到140分以上事件概率与乙考140分以上甲未考到140分以上事件概率的和,而甲考140分以上乙未考到140分以上事件概率为,乙考140分以上甲未考到140分以上事件概率为,因此,所求概率为,选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.8、D【解析】
先假设,这样可以排除A,B.再令,排除C.用反证法证明选项D是正确的.【详解】解:令,则,排除A,B.令,则,排除C.对于D,假设,则,相加得,矛盾,故选D.【点睛】本题考查了反证法的应用,应用特例排除法是解题的关键.9、B【解析】
求得,即可求得,再求得,利用交集运算得解.【详解】由得:或,所以,所以由可得:或所以所以故选:B【点睛】本题主要考查了对数函数的性质,还考查了补集、交集的运算,属于基础题.10、A【解析】
由题先把5本书的两本捆起来看作一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘即可得答案。【详解】由题先把5本书的两本捆起来看作一个元素共有种可能,这一个元素和其他的三个元素在四个位置全排列共有种可能,所以不同的分法种数为种,故选A.【点睛】本题考查排列组合与分步计数原理,属于一般题。11、D【解析】
根据的数值变化规律推测二者之间的关系,最贴切的是二次关系.【详解】根据实验数据可以得出,近似增加一个单位时,的增量近似为2.5,3.5,4.5,6,比较接近,故选D.【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.12、C【解析】试题分析:将5张奖票不放回地依次取出共有种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有种取法,∴考点:古典概型及其概率计算公式二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
,由此求出结果.【详解】解:与的夹角为,,,.故答案为:.【点睛】本题考查向量的模的求法,考查向量的数量积公式,考查运算能力,属于基础题.14、2.【解析】分析:首先利用二项展开式的通项,求得该二项展开式的通项,之后令幂指数等于5,求得r的值,再回代,令其等于80,求得参数的值.详解:展开式的通项为,令,解得,所以有,解得,故答案是2.点睛:该题考查的是有关根据二项展开式的特定项,确定其参数的值的问题,需要熟练掌握二项展开式的通项,之后令幂指数等于相应的数,求得结果即可.15、【解析】
由题意得,由绝对值三角不等式求出函数的最小值,从而可求出实数的取值范围.【详解】由题意得,由绝对值三角不等式得,,因此,实数的取值范围是,故答案为:.【点睛】本题考查不等式恒成立问题,同时也考查了利用绝对值三角不等式求最值,解题时要结合题中条件转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.16、【解析】
求导函数,确定曲线在处的切线斜率,从而可求切线方程.【详解】求导函数可得y,
当时,y,
∴曲线在点处的切线方程为
即答案为.【点睛】本题考查导数的几何意义,考查切线方程,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)直角梯形,【解析】
(1)利用线面平行的判定定理和性质定理,证明A1B1∥平面ABFE,A1B1∥EF,可得点F为B1C1的中点;
(2)四边形ABFE是直角梯形,先判断四边形ABFE是梯形;再判断梯形ABFE是直角梯形,从而计算直角梯形ABFE的面积.【详解】(1)证明:三棱柱中,,平面,平面,平面,又平面,平面平面,,又为的中点,∴点为的中点;(2)四边形是直角梯形,理由为:由(1)知,,且,∴四边形是梯形;又侧棱B1B⊥底面ABC,∴B1B⊥AB;又AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴AB⊥BC,又B1B∩BC=B,∴AB⊥平面B1BCC1;又BF⊂平面B1BCC1,∴AB⊥BF;∴梯形ABFE是直角梯形;由BB1=3,B1F=4,∴BF=5;又EF=3,AB=6,∴直角梯形ABFE的面积为S=×(3+6)×5=.【点睛】本题考查了空间中的平行关系应用问题,是中档题.18、(Ⅰ)0.2(Ⅱ)(ⅰ)(ⅱ)8【解析】
(Ⅰ)记10个水果中恰有2个不合格品的概率为,求得,利用导数即可求解函数的单调性,进而求得函数的最值.(Ⅱ)由(Ⅰ)知,(ⅰ)中,依题意知,,进而利用公式,即可求解;(ⅱ)如果对余下的水果作检验,得这一箱水果所需要的检验费为120元,列出相应的不等式,判定即可得到结论.【详解】(Ⅰ)记10个水果中恰有2个不合格品的概率为f(p),则,∴,由,得.且当时,;当时,.∴的最大值点.(Ⅱ)由(Ⅰ)知,(ⅰ)令Y表示余下的70个水果中的不合格数,依题意知,∴.(ⅱ)如果对余下的水果作检验,则这一箱水果所需要的检验费为120元,由,得,且,∴当种植基地要对每个不合格水果支付的赔偿费用至少为8元时,将促使种植基地对这箱余下的所有水果作检测.【点睛】本题主要考查了独立重复试验的概率的应用,以及二项分布的应用,其中解答中认真审题,分析试验过程,根据对立重复试验求得事件的概率,以及正确利用分布列的性质求解上解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.19、(I)(Ⅱ)【解析】试题分析:(1),是的充分条件,是的子集,所以;(2)由题意可知一真一假,当时,,分别求出真假、假真时的取值范围,最后去并集就可以.试题解析:(1),∵是的充分条件,∴是的子集,,∴的取值范围是.(2)由题意可知一真一假,当时,,真假时,由;假真时,由或.所以实数的取值范围是.考点:含有逻辑联结词命题真假性.20、(1)(2),或【解析】
(1)求出后可得椭圆的标准方程.(2)先求出的外接圆的方程,设点为点为,则由可得对任意的恒成立,故可得关于的方程,从而求得的坐标.【详解】解:(1)因为椭圆的离心率为,所以.①又椭圆过点,所以代入得.②又.③由①②③,解得.所以椭圆的标准方程为.(2)由(1)得,,的坐标分别是.因为的外接圆的圆心一定在边的垂直平分线上,即的外接圆的圆心一定在轴上,所以可设的外接圆的圆心为,半径为,圆心的坐标为,则由及两点间的距离公式,得,解得.所以圆心的坐标为,半径,所以的外接圆的方程为,即.设点为点为,因为,所以,化简,得,所以,消去,得,解得或.当时,;当时,.所以存在点,或满足条件.【点睛】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.直线与圆的位置关系,一般通过圆心到直线的距离与半径的关系来判断.解析几何中的几何关系的恒成立问题,应该通过等价转化变为代数式的恒成立问题.21、(1);(2)当时,E(X)=E(Y),选择产品A和产品B一年后投资收益的数学期望相同,可以在产品A和产品B中任选一个;当时,E(X)>E(Y),选择产品A一年后投资收益的数学期望较大,应选产品A;当时,E(X
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国硼玻璃粉数据监测研究报告
- 2025至2030年中国橡塑隔音板材数据监测研究报告
- 添加牛蒡多糖的复合型可食用膜对不同食品的保鲜作用研究
- 二零二五年度智能农业设备租赁合同范本3篇
- 二零二五年度促销员健康管理与保障合同4篇
- 二零二五年度智能家居瓷砖铺装服务合同4篇
- 2025年度个人汽车租赁及GPS定位服务合同3篇
- 桶装水企业战略合作协议(2025版)2篇
- 二零二五年度公司庆典活动创意策划与实施合同3篇
- 二零二五年度新型材料幕墙安装劳务分包合同范本4篇
- 2024公路沥青路面结构内部状况三维探地雷达快速检测规程
- 2024年高考真题-地理(河北卷) 含答案
- 中国高血压防治指南(2024年修订版)解读课件
- 2024年浙江省中考科学试卷
- 2024风力发电叶片维保作业技术规范
- 《思想道德与法治》课程教学大纲
- 2024光储充一体化系统解决方案
- 2024年全国高考新课标卷物理真题(含答案)
- 处理后事授权委托书
- 食材配送服务方案投标方案(技术方案)
- 足疗店营销策划方案
评论
0/150
提交评论