![2022-2023学年福建省永安市一中数学高二下期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view/16bcc940cf1bc155b00c81a09e35e4c4/16bcc940cf1bc155b00c81a09e35e4c41.gif)
![2022-2023学年福建省永安市一中数学高二下期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view/16bcc940cf1bc155b00c81a09e35e4c4/16bcc940cf1bc155b00c81a09e35e4c42.gif)
![2022-2023学年福建省永安市一中数学高二下期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view/16bcc940cf1bc155b00c81a09e35e4c4/16bcc940cf1bc155b00c81a09e35e4c43.gif)
![2022-2023学年福建省永安市一中数学高二下期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view/16bcc940cf1bc155b00c81a09e35e4c4/16bcc940cf1bc155b00c81a09e35e4c44.gif)
![2022-2023学年福建省永安市一中数学高二下期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view/16bcc940cf1bc155b00c81a09e35e4c4/16bcc940cf1bc155b00c81a09e35e4c45.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,集合,则集合的子集个数为()A.1 B.2 C.3 D.42.若随机变量满足,且,,则()A. B. C. D.3.球的体积是,则此球的表面积是()A. B. C. D.4.在椭圆中,分别是其左右焦点,若,则该椭圆离心率的取值范围是()A. B. C. D.5.下面几种推理过程是演绎推理的是()A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B.由三角形的性质,推测空间四面体的性质C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D.在数列中,,可得,由此归纳出的通项公式6.已知函数,若恰有两个不同的零点,则的取值范围为()A. B. C. D.7.将个不同的小球放入个盒子中,则不同放法种数有()A. B. C. D.8.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布,则,.)A.4.56% B.13.59% C.27.18% D.31.74%9.已知平面向量,的夹角为,且,,则()A. B. C. D.10.在中,内角所对的边分别为,已知,且,则面积的最大值为()A. B. C. D.11.设,为的展开式的第一项(为自然对数的底数),,若任取,则满足的概率是()A. B. C. D.12.若对于任意的实数,有,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数和函数,若对任意都有使得,则实数a的取值范围为______.14.已知地球半径为,地球上两个城市、,城市位于东经30°北纬45°,城市位于西经60°北纬45°,则城市、之间的球面距离为________15.在回归分析中,分析残差能够帮助我们解决的问题是:_____________________.(写出一条即可)16.如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)若在上恒成立,求实数的取值范围.18.(12分)已知a,b,c分别为△ABC内角A,B,C的对边,向量,且.(1)求角C;(2)若,△ABC的面积为,求△ABC内切圆的半径.19.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:组别男235151812女051010713(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:红包金额(单位:元)1020概率现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)已知函数.(1)求的值;(2)求函数的单调区间.21.(12分)设命题函数的值域为;命题对一切实数恒成立,若命题“”为假命题,求实数的取值范围.22.(10分)设函数,.(1)若函数f(x)在处有极值,求函数f(x)的最大值;(2)是否存在实数b,使得关于x的不等式在上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
因为直线与抛物线有两个交点,可知集合的交集有2个元素,可知其子集共有个.【详解】由题意得,直线与抛物线有2个交点,故的子集有4个.【点睛】本题主要考查了集合的交集运算,子集的概念,属于中档题.2、A【解析】
根据二项分布的数学期望和方差求解.【详解】由题意得:解得:,故选A.【点睛】本题考查二项分布的数学期望和方差求解,属于基础题.3、B【解析】
先计算出球的半径,再计算表面积得到答案.【详解】设球的半径为R,则由已知得,解得,故球的表面积.故选:【点睛】本题考查了圆的体积和表面积的计算,意在考查学生的计算能力.4、B【解析】解:根据椭圆定义|PF1|+|PF2|=2a,将设|PF1|=2|PF2|代入得|PF2|=根据椭圆的几何性质,|PF2|≥a-c,故≥a-c,即a≤3ce≥,又e<1,故该椭圆离心率的取值范围故选B.5、C【解析】
推理分为合情推理(特殊→特殊或特殊→一般)与演绎推理(一般→特殊),其中合情推理包含类比推理与归纳推理,利用各概念进行判断可得正确答案.【详解】解:∵A中是从特殊→一般的推理,均属于归纳推理,是合情推理;B中,由平面三角形的性质,推测空间四面体的性质,是由特殊→特殊的推理,为类比推理,属于合情推理;C为三段论,是从一般→特殊的推理,是演绎推理;D为不完全归纳推理,属于合情推理.故选:C.【点睛】本题考查推理中的合情推理与演绎推理,注意理解其概念作出正确判断.6、B【解析】分析:求出函数的导数,通过导数判定函数的单调性,从而得到的取值范围详解:令,则,令,在单调增,在单调减的取值范围为故选点睛:本题主要考查的是函数的零点问题,解决问题的关键是导数判断函数的单调性,然后通过数形结合的方法得到关于的范围7、B【解析】试题分析:采用分步计数原理来求解:分3步,每一步4种方法,不同方法种数有种考点:分步计数原理8、B【解析】试题分析:由题意故选B.考点:正态分布9、C【解析】分析:根据向量的运算,化简,由向量的数量积定义即可求得模长.详解:平面向量数量积,所以所以选C点睛:本题考查了向量的数量积及其模长的求法,关键是理解向量运算的原理,是基础题.10、B【解析】
本题考察的是解三角形公式的运用,可以化简得出角C的大小以及的最大值,然后得出结果.【详解】,C=,解得所以【点睛】在解三角形过程中,要对一些特定的式子有着熟练度,比如说、等等,根据这些式子就要联系到我们的解三角形的公式当中去.11、D【解析】分析:由已知求得m,画出A表示的平面区域和满足ab>1表示的平面区域,求出对应的面积比即可得答案.详解:由题意,s=,∴m==,则A={(x,y)|0<x<m,0<y<1}={(x,y)|0<x<e,0<y<1},画出A={(x,y)|0<x<e,0<y<1}表示的平面区域,任取(a,b)∈A,则满足ab>1的平面区域为图中阴影部分,如图所示:计算阴影部分的面积为S阴影==(x﹣lnx)=e﹣1﹣lne+ln1=e﹣1.所求的概率为P=,故答案为:D.点睛:(1)本题主要考查几何概型,考查定积分和二项式定理,意在考查学生对这些知识的掌握水平和分析推理能力.(1)解答本题的关键是利用定积分求阴影部分的面积.12、B【解析】试题分析:因为,所以,故选择B.考点:二项式定理.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先根据的单调性求出的值域A,分类讨论求得的值域B,再将条件转化为A,进行判断求解即可.【详解】是上的递减函数,∴的值域为,令A=,令的值域为B,因为对任意都有使得,则有A,而,当a=0时,不满足A;当a>0时,,∴解得;当a<0时,,∴不满足条件A,综上得.故答案为.【点睛】本题考查了函数的值域及单调性的应用,关键是将条件转化为两个函数值域的关系,运用了分类讨论的数学思想,属于中档题.14、【解析】
欲求坐飞机从A城市飞到B城市的最短距离,即求出地球上这两点间的球面距离即可.A、B两地在同一纬度圈上,计算经度差,求出AB弦长,以及球心角,然后求出球面距离.即可得到答案.【详解】由已知地球半径为R,则北纬45°的纬线圈半径为,
又∵两座城市的经度分别为东经30°和西经60°,
故连接两座城市的弦长,
则A,B两地与地球球心O连线的夹角,
则A、B两地之间的距离是.
故答案为:.【点睛】本题考查球面距离及其他计算,考查空间想象能力,是基础题.15、寻找异常点,考查相应的样本数据是否有错【解析】
分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适.【详解】分析残差能够帮助我们解决的问题是:寻找异常点,考查相应的样本数据是否有错;故答案为:寻找异常点,考查相应的样本数据是否有错.【点睛】本题考查线性回归方程中残差的作用,是基础题.16、【解析】
作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦距的椭球上,且BE、CE都垂直于焦距AD,所以BE=CE.取BC中点F,连接EF,则EF⊥BC,EF=2,,四面体ABCD的体积,显然,当E在AD中点,即B是短轴端点时,BE有最大值为b=,所以.[评注]本题把椭圆拓展到空间,对缺少联想思维的考生打击甚大!当然,作为填空押轴题,区分度还是要的,不过,就抢分而言,胆大、灵活的考生也容易找到突破点:AB=BD(同时AC=CD),从而致命一击,逃出生天!三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(1)利用导数求得斜率,再求得切点坐标,由此求得切线方程.(II)将原不等式分离常数得,构造函数,利用导数求得,由此求得的取值范围.【详解】解:(Ⅰ)的导数为,可得切线的斜率为1,切点为,切线方程为,即;(Ⅱ)若在上恒成立,可得在上恒成立,令,则,,可得在上单调递增,则,可得在上单调递增,则,则.【点睛】本小题主要考查切线方程的求法,考查利用导数求解不等式恒成立问题,属于中档题.18、(1)(2)【解析】
(1)由得出,利用正弦定理边角互化的思想,以及内角和定理将转化为,并利用两角和的正弦公式求出的值,于此得出角的值;(2)由三角形的面积公式求出,结合余弦定理得出的值,可求出的值,再利用等面积法得出,即可得出的内切圆半径的值.【详解】(1)由得,由正弦定理,,.在中,,;(2)由等面积法:得.由余弦定理,,,从而,.【点睛】本题考查利用正弦定理、余弦定理解三角形,以及三角形面积的应用,考查三角形内切圆半径的计算,在计算内切圆的半径时,可利用等面积法得出(其中为三角形的面积,为三角形的周长),考查运算求解能力,属于中等题.19、(1)不能;(2)①;②分布列见解析,.【解析】
(1)根据题目所给的数据可求2×2列联表即可;计算K的观测值K2,对照题目中的表格,得出统计结论.(2)由相互独立事件的概率可得男“环保达人”又有女“环保达人”的概率:P=1﹣()3﹣()3,解出X的分布列及数学期望E(X)即可;【详解】(1)由图中表格可得列联表如下:非“环保关注者”是“环保关注者”合计男104555女153045合计2575100将列联表中的数据代入公式计算得K”的观测值,所以在犯错误的概率不超过0.05的前提下,不能认为是否为“环保关注者”与性别有关.(2)视频率为概率,用户为男“环保达人”的概率为.为女“环保达人”的概率为,①抽取的3名用户中既有男“环保达人”又有女“环保达人”的概率为;②的取值为10,20,30,40.,,,,所以的分布列为10203040.【点睛】本题考查了独立性检验的应用问题,考查了概率分布列和期望,计算能力的应用问题,是中档题目.20、(1)(2)见解析【解析】
(1)求导得到,代入数据计算得到答案.(2)求导得到,根据导数的正负得到函数的单调区间.【详解】(1),故,故.(2),则或;,则.故函数在和上单调递增,在上单调递减.【点睛】本题考查了计算导数值,求函数的单调区间,意在考查学生的计算能力.21、【解析】试题分析:分别求出命题,成立的等价条件,利用且为假.确定实数的取值范围.试题解析:真时,合题意.时,.时,为真命题.真时:令,故在恒成立时,为真命题.为真时,.为假命题时,.考点:复合命题的真假.22、(1)函数f(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国饲料中间体化学品行业头部企业市场占有率及排名调研报告
- 2025-2030全球高速标签打印机行业调研及趋势分析报告
- 2025年全球及中国汽车座椅加热通风线束行业头部企业市场占有率及排名调研报告
- 2025-2030全球条形码库存管理系统行业调研及趋势分析报告
- 2025-2030全球生物基电池行业调研及趋势分析报告
- 2025年全球及中国农场畜牧管理软件行业头部企业市场占有率及排名调研报告
- 2025-2030全球印刷级热敏纸行业调研及趋势分析报告
- 担保函保证合同
- 2025监控售后维修合同
- 房屋买卖合同范文
- 2025年长沙穗城轨道交通有限公司招聘笔试参考题库含答案解析
- 2024年湖南有色金属职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2025年山东华鲁海运有限公司招聘笔试参考题库含答案解析
- 银川经济技术开发区2024年综合考核评价指标表及评分细则
- 品管圈PDCA改善案例-降低住院患者跌倒发生率
- 《中小学校园食品安全和膳食经费管理工作指引》专题讲座
- 广东省茂名市2023-2024学年高一上学期物理期末试卷(含答案)
- 沙发市场需求与消费特点分析
- 丰顺县县级集中式饮用水水源地基础状况调查和风险评估报告
- 重庆市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 《七律二首 送瘟神》教案- 2023-2024学年高教版(2023)中职语文职业模块
评论
0/150
提交评论