版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.222.下列各点中,在函数y=2x-5图象上的点是()A.(0,0) B.(,-4) C.(3,-1) D.(-5,0)3.下列图形中,不是中心对称图形的是()A. B. C. D.4.如图,直线经过点A(a,)和点B(,0),直线经过点A,则当时,x的取值范围是()A.x>-1 B.x<-1 C.x>-2 D.x<-25.己知一次函数,若随的增大而增大,则的取值范围是()A. B. C. D.6.若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.4 B.5 C.6 D.77.如图,在口ABCD中,对角线AC、BD交于点O.若AC=4,BD=5,BC=3,则△BOC的周长为()A.6 B.7.5 C.8 D.128.如图,将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,则对于结论:①DE=BC;②∠EAC=∠DAB;③EA平分∠DEC;④若DE∥AC,则∠DEB=60°;其中正确结论的个数是()A.4 B.3 C.2 D.19.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时点P的坐标是()A.(2016,0) B.(2017,1) C.(2017,-1) D.(2018,0)10.在一组数据3,4,4,6,8中,下列说法错误的是()A.它的众数是4 B.它的平均数是5C.它的中位数是5 D.它的众数等于中位数二、填空题(每小题3分,共24分)11.若,则_______(填不等号).12.矩形ABCD中,对角线AC、BD交于点O,于,若,,则____.13.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正确的序号是(把你认为正确的都填上).14.如图,在▱ABCD中,∠ADO=30°,AB=8,点A的坐标为(﹣3,0),则点C的坐标为_____.15.如图,是的中位线,平分交于,,则的长为________.16.如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是__.17.已知一组数据6、4、a、3、2的平均数是5,则a的值为_____.18.某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.三、解答题(共66分)19.(10分)(1)已知y﹣2与x成正比例,且x=2时,y=﹣1.①求y与x之间的函数关系式;②当y<3时,求x的取值范围.(2)已知经过点(﹣2,﹣2)的直线l1:y1=mx+n与直线l2:y2=﹣2x+1相交于点M(1,p)①关于x,y的二元一次方程组的解为;②求直线l1的表达式.20.(6分)如图,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x(0<x<1),矩形的面积为S.(1)求S关于x的函数解析式;(2)当EFGH是正方形时,求S的值.21.(6分)阅读材料I:教材中我们学习了:若关于的一元二次方程的两根为,根据这一性质,我们可以求出己知方程关于的代数式的值.问题解决:(1)已知为方程的两根,则:___,___,那么_(请你完成以上的填空)阅读材料:II已知,且.求的值.解:由可知又且,即是方程的两根.问题解决:(2)若且则;(3)已知且.求的值.22.(8分)如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长m,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=2,n=6,求旗杆AB的长.23.(8分)如图,点E是正方形ABCD的BC延长线上一点,连接ED,过点B作交ED的延长线于点F,连接CF.(1)若,,求BF的长;(2)求证:.24.(8分)如图,在白纸上画两条长度均为且夹角为的线段、,然后你把一支长度也为的铅笔放在线段上,将这支铅笔以线段上的一点为旋转中心旋转顺时针旋转一周.图①图②(1)若与重合,当旋转角为______时,这支铅笔与线段、围成的三角形是等腰三角形.(2)点从逐渐向移动,记:①若,当旋转角为、______、______、______、、______时这支铅笔与线段、共围成6个等腰三角形.②当这支铅笔与线段、正好围成5个等腰三角形时,求的取值范围.③当这支铅笔与线段、正好围成3个等腰三角形时,直接写出的取值范围.25.(10分)如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.(1)求证:四边形ABCD是平行四边形(2)若AC⊥BD,且AB=4,则四边形ABCD的周长为________.26.(10分)如图,AC为矩形ABCD的对角线,DE⊥AC于E,BF⊥AC于F。求证:DE=BF
参考答案一、选择题(每小题3分,共30分)1、D【解析】
观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.2、B【解析】
只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.【详解】解:A、把(0,0)代入y=2x-5得:左边=0,右边=2×(0-1)-5=-5,左边≠右边,故A选项错误;
B、把(,-4)代入y=2x-5得:左边=-4,右边=2×-5=-4,左边=右边,故B选项正确;
C、把(3,-1)代入y=2x-5得:左边=-1,右边=2×3-5=1,左边≠右边,故C选项错误;
D、把(-5,0)代入y=2x-5得:左边=0,右边=2×(-5)-5=-15,左边≠右边,故D选项错误.
故选:B.【点睛】本题主要考查对一次函数图象上点的坐标特征的理解和掌握,能根据点的坐标判断是否在函数的图象上是解此题的关键.3、B【解析】
解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.4、A【解析】
先求出点A坐标,再结合图象观察出直线直线在直线下方的自变量x的取值范围即可.【详解】把A(a,-2)代入y2=2x,得-2=2a,解得:a=-1,所以点A(-1,-2),观察图象可知当x>-1时,,故选A.【点睛】本题考查了一次函数与一元一次不等式,观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.注意数形结合思想的运用.5、A【解析】
根据一次函数的性质分析解答即可,一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量,当k>0时,直线必过一、三象限,y随x的增大而增大;当k<0时,直线必过二、四象限,y随x的增大而减小.【详解】解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,∴k﹣1>0,解得k>1,故选A.【点睛】一次函数的性质是本题的考点,熟练掌握其性质是解题的关键.6、B【解析】
根据题意列方程组得到k=n-4,由于0<k<2,于是得到0<n-4<2,即可得到结论.【详解】依题意得:,∴k=n-4,∵0<k<2,∴0<n-4<2,∴4<n<6,故选B.【点睛】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.7、B【解析】
利用平行四边形的对角线互相平分的性质,解答即可.【详解】解:在平行四边形ABCD中,则OC=12AC=2,OB=12BD=2.1,
所以△BOC的周长为OB+OC+BC=2.1+2+3=7.1.
故选:【点睛】本题主要考查了平行四边形的性质问题,应熟练掌握,属于基础性题目,比较简单.8、A【解析】
由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.【详解】∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,∴△ABC≌△ADE,∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,∴∠EAC=∠DAB;故②正确;∵AE=AC,∴∠AEC=∠C,∴∠AEC=∠AED,∴EA平分∠DEC;故③正确;∵DE∥AC,∴∠C=∠BED,∵∠AEC=∠AED=∠C,∴∠DEB=∠AEC=∠AED=60°,故④正确;综上所述:正确的结论是①②③④,共4个,故选:A.【点睛】本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.9、B【解析】试题解析:以时间为点P的下标.
观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,
∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).
∵2017=504×4+1,
∴第2017秒时,点P的坐标为(2017,1).故选B.10、C【解析】
一组数据中出现次数最多的数为众数;将这组数据从小到大的顺序排列,处于中间位置的一个数或两个数的平均数是中位数.根据平均数的定义求解.【详解】在这一组数据中4是出现次数最多的,故众数是4;将这组数据已经从小到大的顺序排列,处于中间位置的那个数是4,那么由中位数的定义可知,这组数据的中位数是4;由平均数的公式的,=(3+4+4+6+8)÷5=5,平均数为5,故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.二、填空题(每小题3分,共24分)11、<【解析】试题分析:根据不等式的基本性质3,直接求解得a<b.故答案为<12、1或【解析】
试题解析:如图(一)所示,AB是矩形较短边时,∵矩形ABCD,∴OA=OD=BD;∵OE:ED=1:3,∴可设OE=x,ED=3x,则OD=2x∵AE⊥BD,AE=,∴在Rt△OEA中,x2+()2=(2x)2,∴x=1∴BD=1.当AB是矩形较长边时,如图(二)所示,∵OE:ED=1:3,∴设OE=x,则ED=3x,∵OA=OD,∴OA=1x,在Rt△AOE中,x2+()2=(1x)2,∴x=,∴BD=8x=8×=.综上,BD的长为1或.13、①②④【解析】分析:∵四边形ABCD是正方形,∴AB=AD。∵△AEF是等边三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG。∴BE+DF≠EF。∴③说法错误。∵EF=2,∴CE=CF=。设正方形的边长为a,在Rt△ADF中,,解得,∴。∴。∴④说法正确。综上所述,正确的序号是①②④。14、(8,33)【解析】
根据30度直角三角形的性质得到AD,由勾股定理得到DO,再根据平行线的性质即可得到答案.【详解】∵点A坐标为(﹣3,0)∴AO=3∵∠ADO=30°,AO⊥DO∴AD=2AO=6,∵DO=A∴DO=33∴D(0,33)∵四边形ABCD是平行四边形∴AB=CD=8,AB∥CD∴点C坐标(8,33)故答案为(8,33)【点睛】本题考查30度直角三角形的性质、勾股定理和平行线的性质,解题的关键是掌握30度直角三角形的性质、勾股定理和平行线的性质.15、1【解析】
EF是△ABC的中位线,可得DE∥BC,又BD平分∠ABC交EF于D,则可证得等角,进一步可证得△BDE为等腰三角形,从而求出EB.【详解】解:∵EF是△ABC的中位线
∴EF∥BC,∠EDB=∠DBC
又∵BD平分∠ABC
∴∠EBD=∠DBC=∠EDB
∴EB=ED=1.
故答案为1.【点睛】本题考查的是三角形中位线的性质和等腰三角形的性质,比较简单.16、1.【解析】
根据直线解析式分别求出点E、F的坐标,然后利用三角形的面积公式求解即可.【详解】∵当y=0时,解得x=1,∴点E的坐标是(1,0),即OE=1,∵OC=4,∴EC=OC﹣OE=4﹣1=1,∴点F的横坐标是4,∴即CF=2,∴△CEF的面积故答案为:1.【点睛】本题考查的是一次函数图象上点的坐标特点,根据直线的解析式求出点E、F的坐标是解题的关键,同时也考查了矩形的性质,难度不大.17、1.【解析】
根据平均数的定义列出方程,解方程可得.【详解】∵数据6、4、a、3、2的平均数是5,∴,解得:a=1,故答案为:1.【点睛】本题主要考查算术平均数的计算,熟练掌握算术平均数的定义是解题的关键.18、20%【解析】
设平均每次降价的百分率为x,则第一次降价后的单价是原来的(1-x),第二次降价后的单价是原来的(1-x)2,根据题意列方程求解即可.【详解】设平均每次降价的百分率为x,根据题意列方程得250×(1-x)2=160,解得x1=0.2,2,x2=1.8(不符合题意,舍去),即该商品平均每次降价的百分率为20%,故答案为:20%.【点睛】本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.三、解答题(共66分)19、(1)①y=﹣4x+2;②x>-;(2)①;②y1=2x+2.【解析】
(1)根据正比例函数的定义即可求解,再列出不等式即可求解;(2)根据一次函数与二元一次方程组的关系即可求解,把两点代入即可求解.【详解】解:(1)①∵y﹣2与x成正比例,设y﹣2=kx,把x=2,y=﹣1代入可得;﹣1﹣2=2k,解得:k=﹣4,∴y=﹣4x+2,②当y<3时,则﹣4x+2<3,解得:x>-;(2)①把点M(1,p)代入y2=﹣2x+1=4,∴关于x、y的二元一次方程组组的解即为直线l1:y1=mx+n与直线l2:y2=﹣2x+1相交的交点M(1,4)的坐标.故答案为:;②b把点M(1,4)和点(﹣2,﹣2)代入直线l1:y1=mx+n,可得:,解得:,所以直线l1的解析式为:y1=2x+2.【点睛】此题主要考查二元一次方程组与一次函数的性质,解题的关键是熟知他们的关系.20、(1)矩形EFGH的面积为S=-x2+x(0<x<1);(2)S=.【解析】
(1)连接BD交EF于点M,根据菱形的性质得出AB=AD,BD⊥EF,求出△AEH是等边三角形,根据等边三角形的性质得出∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,求出EM=BE,即可求出答案;(2)根据正方形的性质求出x,再求出面积即可.【详解】(1)连接BD交EF于点M,∵四边形ABCD是菱形,∴AB=AD,∵AE=AH,∴EH∥BD∥FG,BD⊥EF,∵在菱形ABCD中,∠A=60°,AE=AH,∴△AEH是等边三角形,∴∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,∴EM=BE,∴EF=BE,∵AB=1,AE=x,∴矩形EFGH的面积为S=EH×EF=x×(1-x)=-x2+x(0<x<1);(2)当矩形EFGH是正方形时,EH=EF,即x=(1-x),解得:x=,所以S=x2=()2=.【点睛】考查了矩形的性质,菱形的性质,等边三角形的性质和判定,二次函数的解析式,正方形的性质,解直角三角形等知识点,能综合运用知识点进行推理和计算是解此题的关键.21、(1)-3;-1;11;(2);(3).【解析】
(1)根据根与系数的关系可求出x1+x2和x1x2的值,然后利用完全平方公式将变形为,再代值求解即可;(2)利用加减法结合因式分解解方程组,然后求值即可;(3)根据材料中的的解法将等式变形,然后将m和看作一个整体,利用一元二次方程根与系数的关系,可求出m+和m•的值,然后再代值求解.【详解】解:(1)∵为方程的两根,∴,故答案为:-3;-1;11;(2)①×b得:②×a得:③-④得:或∴或又∵∴,即故答案为:;(3)由n2+3n-2=0可知n≠0;∴∴又2m2-3m-1=0,且mn≠1,即m≠;∴m、是方程2x2-3x-1=0的两根,
∴m+=,m•=;∴.【点睛】本题考查一元二次方程根与系数的关系,能够正确的理解材料的含义,并熟练地掌握根与系数的关系是解答此题的关键.22、旗杆的高度为1m.【解析】
设旗杆的高为x,在Rt△ABC中,由AC2=AB2+BC2,推出(x+m)2=n2+x2,可得x=,由此即可解决问题.【详解】设旗杆的高为x.在Rt△ABC中,∵AC2=AB2+BC2,∴(x+m)2=n2+x2,∴x=,∵m=2,n=6,∴x=.答:旗杆AB的长为1.【点睛】本题考查解直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.23、(1);(2)见解析.【解析】
(1)由直角三角形的性质可求CD=4=BC,再由直角三角形的性质可求BF的长;(2)过点C作CG⊥CF,交DE于点G,通过证明△FBC≌△GDC,可得FC=CG,BF=DG,即可得结论.【详解】解:(1)正方形ABCD中:,,∵∵∴∴∴∴∴∴(2)证明:过点C作交DE于G∴∴又∵∴在四边形BCDF中∵∴∵∴∴,∴在中.∴【点睛】本题考查了正方形的性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.24、(1)或;(2)①、、、;②;③【解析】
(1)运用旋转的性质作答即可;(2)①对旋转的各个位置进行讨论,即可完成解答;当旋转,,时,这段与、三次围成等腰三角形,这样正好围成6个等于三角形分类讨论即可;【详解】解:(1)当已知的30°角为底角,那么旋转30°即可;当已知的30°角为顶角,那么旋转75°即可;故答案为或.(2)①t=1,即P为AB的中点:当已知的30°角为底角,那么30°、120°、210°、300°即可;当已知的30°角为顶角,那么旋转75°、255°即可;故答案为:、、、②如图1,位于中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民营医院规制度
- 装备科工作总结
- 建设施工机械设备合同书(3篇)
- 期末总结范文1200字(32篇)
- 投标保密的承诺书(30篇)
- 大一学生干部个人总结
- 江苏省泰州市(2024年-2025年小学五年级语文)人教版期末考试((上下)学期)试卷及答案
- 公共卫生主题培训
- 世界历史九年级上册教案全册
- DB11T 1133-2014 人工砂应用技术规程
- 酒店餐饮管理职业生涯规划与管理
- 遗体防腐整容之遗体消毒之选择使用消毒剂课件
- 传统音乐与现代音乐的融合与共生
- 老人康复治疗知识讲座
- 机械制图直线的投影公开课课件1
- 物流仓储招商策划制定
- 商业秘密保护意识培训
- 专题03 中点弦问题(点差法)(教师版)2024高考数学复习满分突破
- 少儿体智能特色课程设计
- 成人重症患者镇痛管理(专家共识)
- AFP、DCP和GGT联合检测在原发性肝癌诊断中的应用价值演示稿件
评论
0/150
提交评论