版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.有19位同学参加歌咏比赛,所得的分数互不相同,所得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学得分的()A.平均数 B.中位数 C.众数 D.总分2.下列算式正确的()A.=1 B.=C.=x+y D.=3.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()A.中位数 B.平均数 C.方差 D.极差4.如图,正方形的对角线、交于点,以为圆心,以长为半径画弧,交于点,连接,则的度数为()A.45° B.60° C.1.5° D.75°5.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m6.下列图案,既是轴对称图形又是中心对称图形的个数是().A.1 B.2 C.3 D.47.在平面直角坐标系中,点M(2019,–2019)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.平行四边形两个内角的度数的比是1:2,则其中较小的内角是()A. B. C. D.9.如果关于x的分式方程ax+1-3=1-xx+1有负数解,且关于y的不等式组A.﹣2 B.0 C.1 D.310.如图,在▱ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=1cm,则AD的长是()cm.A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)11.如图,字母A所代表的正方形面积为____.12.对于实数x我们规定[x]表示不大于x的最大整数,例如[1.8]=1,[7]=7,[﹣5]=﹣5,[﹣2.9]=﹣3,若[]=﹣2,则x的取值范围是_____.13.写出一个经过点,且y随x的增大而减小的一次函数的关系式:______.14.两人从同一地点同时出发,一人以30m/min的速度向北直行,一人以30m/min的速度向东直行,10min后他们相距__________m15.已知反比例函数y=(k为常数,k≠2)的图像有一支在第二象限,那么k的取值范围是_______.16.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.17.若x+y=1,xy=-7,则x2y+xy2=_____________.18.已知:关于的方程有一个根是2,则________,另一个根是________.三、解答题(共66分)19.(10分)如图所示,点O是矩形ABCD对角线AC的中点,过点O作EFAC,交BC交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.20.(6分)如图,在中,,是的中点,是的中点,过点作交的延长线于点,连接.(1)写出四边形的形状,并证明:(2)若四边形的面积为12,,求.21.(6分)如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,∠B=90°,DC=5cm.点P从点A向点D以lcm/s的速度运动,到D点停止,点Q从点C向B点以2cm/s的速度运动,到B点停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;BQ=.(2)当t为何值时,四边形PDCQ是平行四边形?(3)当t为何值时,△QCD是直角三角形?22.(8分)如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长.23.(8分)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.24.(8分)如图,已知,点在上,点在上.(1)请用尺规作图作出的垂直平分线,交于点,交于点;(保留作图痕迹,不写作法);(2)连结,求证四边形是菱形.25.(10分)在正方形ABCD中,P是对角线AC上的点,连接BP、DP.⑴求证:BP=DP;⑵如果AB=AP,求∠ABP的度数.26.(10分)某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了“学生阳光体育运动”,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:成绩统计分析表(1)张明第2次的成绩为__________秒;(2)请补充完整上面的成绩统计分析表;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.【详解】解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以,故选:B.【点睛】本题考查了统计量的选择,掌握各个统计量的特点是解题关键.2、A【解析】
A、分子(-a+b)2=(a-b)2,再与分母约分即可;B、把分子和分母都除以-1得出结论;C、是最简分式;D、分子和分母同时扩大10倍,要注意分子和分母的每一项都要扩大10倍.【详解】A、==1,所以此选项正确;B、=≠,所以此选项错误;C、不能化简,是最简分式,所以此选项错误;D、=≠,所以此选项错误;故选:A.【点睛】本题考查了分式的化简,依据是分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变;要注意以下几个问题:①当分子、分母的系数为分数或小数时,应运用分数的基本性质将分式的分子、分母中的系数化为整数,如选项D;②当分子或分母出现完全平方式时,要知道(a-b)2=(b-a)2,如选项A;③当分子和分母的首项系数为负时,通常会乘以-1,化为正数,要注意每一项都乘,不能漏项,如选项B;④因式分解是基础,熟练掌握因式分解,尤其是平方差公式和完全平方公式.3、A【解析】
根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.4、C【解析】
由正方形的性质得出∠CBD=45°,证明△BCE是等腰三角形即可得出∠BCE的度数.【详解】解:∵四边形ABCD是正方形,
∴∠CBD=45°,BC=BA,
∵BE=BA,
∴BE=BC,
∴∠BCE=(180°-45°)÷2=1.5°.故选:C.【点睛】本题考查了正方形的性质、等腰三角形的性质;熟练掌握正方形和等腰三角形的性质进行求解是解决问题的关键.5、D【解析】
根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选D.【点睛】考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.6、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,是中心对称图形;
第二个图形是轴对称图形,不是中心对称图形;
第三个图形是轴对称图形,是中心对称图形;
第四个图形是轴对称图形,是中心对称图形.
共有3个图形既是轴对称图形,也是中心对称图形,
故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、D【解析】
四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),再根据点M的坐标的符号,即可得出答案.【详解】解:∵M(2019,﹣2019),∴点M所在的象限是第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8、C【解析】
根据平行四边形的性质可知,平行四边形的对角相等,邻角互补,故该平行四边形的四个角的比值为1:2:1:2,所以可以计算出平行四边形的各个角的度数.【详解】根据平行四边形的相邻的两个内角互补知,设较小的内角的度数为x,则有:x+2x=180°∴x=60°,即较小的内角是60°故选C.【点睛】此题考查平行四边形的性质,解题关键在于设较小的内角的度数为x9、B【解析】
解关于y的不等式组2(a-y)⩽-y-43y+42<y+1,结合解集无解,确定a的范围,再由分式方程ax+1-3=【详解】由关于y的不等式组2(a-y)⩽-y-43y+42<y+1∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵ax+1-3=1-xx+1而关于x的分式方程ax+1∴a﹣4<1∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.10、A【解析】根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD的中位线,则AD=2OE,解:∵四边形ABCD为平行四边形,∴BO=DO,∵点E是AB的中点,∴OE为△ABD的中位线,∴AD=2OE,∵OE=1cm,∴AD=2cm.故选A.“点睛”本题考查平行四边形的性质、三角形的中位线定理,是基础知识比较简单.二、填空题(每小题3分,共24分)11、1【解析】
根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2-PQ2=289-225=1,则正方形QMNR的面积为1.故答案为:1.【点睛】此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.12、﹣9≤x<﹣1【解析】
根据题意可以列出相应的不等式,解不等式求出x的取值范围即可得答案.【详解】∵[x]表示不大于x的最大整数,[]=﹣2,∴﹣2≤<﹣1,解得:﹣9≤x<﹣1.故答案为:﹣9≤x<﹣1.【点睛】本题考查了一元一次不等式组和一元一次不等式组的整数解的应用,能根据题意得出关于x的不等式组是解题关键.13、y=-x-1【解析】
可设,由增减性可取,再把点的坐标代入可求得答案.【详解】设一次函数解析式为,随的增大而减小,,故可取,解析式为,函数图象过点,,解得,.故答案为:(注:答案不唯一,只需满足,且经过的一次函数即可).【点睛】本题有要考查一次函数的性质,掌握“在中,当时随的增大而增大,当时随的增大而减小”是解题的关键.14、【解析】
两人从同一地点同时出发,一人以30m/min的速度向北直行【详解】解:设10min后,OA=30×10=300(m),OB=30×10=300(m),甲乙两人相距AB=(m).故答案为:.【点睛】本题考查的是勾股定理的应用,根据题意判断直角三角形是解答此题的关键.15、k<2.【解析】
由于反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,故k-2<0,求出k的取值范围即可.【详解】∵反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,∴k-2<0,解得k<2,故答案为k<2.【点睛】此题考查反比例函数的性质,解题关键在于掌握利用其经过的象限进行解答.16、0.7【解析】
用通话时间不足10分钟的通话次数除以通话的总次数即可得.【详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.17、﹣7【解析】∵x+y=1,xy=﹣7,∴x2y+xy2=xy(x+y)=-7×1=-7.18、2,1.【解析】
设方程x2-3x+a=0的另外一个根为x,根据根与系数的关系,即可解答.【详解】解:设方程的另外一个根为,则,,解得:,,故答案为:2,1.【点睛】本题主要考查了根与系数的关系及一元二次方程的解,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q.三、解答题(共66分)19、答案见解析【解析】分析:由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论.详解:∵O是AC的中点,且EF⊥AC,
∴AF=CF,AE=CE,OA=OC,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠AFO=∠CEO,
在△AOF和△COE中,
∴△AOF≌△COE(AAS),
∴AF=CE,
∴AF=CF=CE=AE,
∴四边形AECF是菱形;点睛:此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.20、(1)详见解析;(2)【解析】
(1)由“AAS”可证△AEF≌△DEC,可得AF=CD,由直角三角形的性质可得AD=BD=CD,由菱形的判定是可证ADBF是菱形.
(2)由题意可得S△ABC=S四边形ADBF=12,可得AC的长,由勾股定理可求BC的长.【详解】解:解:(1)四边形ADBF是菱形,
理由如下:∵E是AD的中点,
∴AE=DE,
∵AF∥BC
∴∠AFE=∠DCE,且∠AEF=∠CED,AE=DE
∴△AEF≌△DEC(AAS)
∴AF=CD,
∵点D是BC的中点
∴BD=DC
∴AF=BD,且AF∥CD
∴四边形ADBF是平行四边形,
∵∠BAC=90°,D是BC的中点,
∴AD=BD,
∴平行四边形ADBF是菱形
(2)∵四边形ADBF的面积为12,
∴S△ABD=6
∵D是BC的中点
∴S△ABC=12=×AB×AC
∴12=×4×AC
∴AC=6,
∴BC=.【点睛】本题考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.21、(1)tcm,(15﹣2t)cm;(2)t=3秒;(3)当t为秒或秒时,△QCD是直角三角形.【解析】
(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,BQ的长(2)当AP=CQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当∠CDQ=90°或∠CQD=90°△QCD是直角三角形,分情况讨论t的一元一次方程方程,解方程求出符合题意的t值即可;【详解】(1)由运动知,AP=t,CQ=2t,∴BQ=BC﹣CQ=15﹣2t,故答案为tcm,(15﹣2t)cm;(2)由运动知,AP=t,CQ=2t,∴DP=AD﹣AP=12﹣t,∵四边形PDCQ是平行四边形,∴PD=CQ,∴12﹣t=2t,∴t=3秒;(3)∵△QCD是直角三角形,∴∠CDQ=90°或∠CQD=90°,①当∠CQD=90°时,BQ=AD=12,∴15﹣2t=12,∴t=秒,②当∠CDQ=90°时,如图,过点D作DE⊥BC于E,∴四边形ABED是矩形,∴BE=AD=12,∴CE=BC﹣BE=3,∵∠CED=∠CDQ=90°,∠C=∠C,∴△CDE∽△CQD,∴,∴,∴t=秒,即:当t为秒或秒时,△QCD是直角三角形.【点睛】此题考查平行四边形的判定和直角三角形的判定,解题关键是掌握性质并且灵活运用求解22、12【解析】
如图,连接AD,根据垂直平分线的性质可得BD=AD,进而得到∠DAC的度数和DC的长,再根据勾股定理求出AC的长即可.【详解】如图,连接AD,∵ED是AB的垂直平分线,∴AD=BD=4,∴∠BAD=∠B=30°,∴∠DAC=30°,∵DC=12AD∴AC=AD故答案是12.【点睛】本题主要考查垂直平分线的性质以及三角函数,求出∠DAC的大小是解题的关键.23、(1)①P2,P3,②1≤x≤或≤x≤-1;(2)2-≤a≤1.【解析】
(1)由已知结合图象,找到点P所在的区域;
(2)分别求出点A与B的坐标,由线段AB的位置,通过做圆确定正方形的位置.【详解】解:(1)①∵原点正方形边长为4,
当P1(0,0)时,正方形上与P1的最小距离是2,故不存在Q使P1Q≤1;
当P2(-1,1)时,存在Q(-2,1),使P2Q≤1;
当P3(3,2)时,存在Q(2,2),使P3Q≤1;
故答案为P₂、P₃;
②如图所示:阴影部分就是原点正方形友好点P的范围,
由计算可得,点P横坐标的取值范围是:
1≤x≤2+或-2-≤x≤-1;(2)一次函数y=-x+2的图象分别与x轴,y轴交于点A,B,
∴A(0,2),B(2,0),
∵线段AB上存在原点正方形的友好点,
如图所示:
原点正方形边长a的取值范围2-≤a≤1.【点睛】本题考查一次函数的性质,新定义;能够将新定义的内容转化为线段,圆,正方形之间的关系,并能准确画出图形是解题的关键.24、(1)详见解析;(2)详见解析.【解析】
(1)按照尺规作图的步骤作出图形即可;
(2)证明AC垂直平分EF,则根据对角线互相垂直平分的四边形为菱形得到四边形AECF是菱形.【详解】解:(1)如图,就是所求作的的垂直平分线,(2)证明:∵四边形ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民营医院规制度
- 装备科工作总结
- 建设施工机械设备合同书(3篇)
- 期末总结范文1200字(32篇)
- 投标保密的承诺书(30篇)
- 大一学生干部个人总结
- 江苏省泰州市(2024年-2025年小学五年级语文)人教版期末考试((上下)学期)试卷及答案
- 公共卫生主题培训
- 世界历史九年级上册教案全册
- DB11T 1133-2014 人工砂应用技术规程
- 广东省特种设备作业人员考试机构申请表
- 第三章-自然语言的处理(共152张课件)
- 2024年人教部编版语文六年级上册第四单元测试题及答案
- 分布式光伏系统组件缺陷检测及诊断技术规范
- 北师大版七年级数学上册期中考试卷
- 国开2024年秋《经济法学》计分作业1-4答案形考任务
- 2024新信息科技三年级第三单元:畅游网络世界大单元整体教学设计
- 2024-2025形势与政策:促进高质量充分就业 为中国式现代化建设提供有力支撑
- 知道网课智慧《设计创新思维》测试答案
- 中国农业银行贷后管理办法
- 生涯发展报告 (修改)
评论
0/150
提交评论