智慧安防AI解决方案专题分析报告_第1页
智慧安防AI解决方案专题分析报告_第2页
智慧安防AI解决方案专题分析报告_第3页
智慧安防AI解决方案专题分析报告_第4页
智慧安防AI解决方案专题分析报告_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

智慧安防AI解决方案专题分析报告

以智能工厂为发展方向,开展智能制造试点示范,加快推动云计算、物联网、智能工业机器人、增材制造等技术在生产过程中的应用,推进生产装备智能化升级、工艺流程改造和基础数据共享。着力在工控系统、智能感知元器件、工业云平台、操作系统和工业软件等核心环节取得突破,加强工业大数据的开发与利用,有效支撑制造业智能化转型,构建开放、共享、协作的智能制造产业生态。网络设施和产业基础得到有效巩固加强,应用支撑和安全保障能力明显增强。固定宽带网络、新一代移动通信网和下一代互联网加快发展,物联网、云计算等新型基础设施更加完备。人工智能等技术及其产业化能力显著增强。视觉人工智能行业(一)视觉人工智能技术发展历程1、计算机视觉的定义计算机视觉技术赋予计算机人类双眼所拥有的分割、分类、识别、跟踪、判别等功能,通过构造多层的神经网络,识别不同层级的图像特征并在顶层做出判断和分类。2、计算机视觉的发展历程计算机视觉主要经历了以上三个发展阶段。伴随着同期互联网海量数据的爆发,各类数据集成为计算机视觉技术发展的土壤,而深度学习和深层神经网络理论最终带来最新一次的技术变革。2015年,视觉人工智能系统识别项目ImageNet比赛中,ResNet以3.57%的识别错误率首次超越人类视觉的5.1%。目前人脸识别准确率已经提升至97%以上。(二)视觉人工智能产业链简介与人工智能市场的产业链相似,视觉人工智能市场的产业链同样分为基础层、技术层与应用层。其中,基础层主要包括提供算力的芯片与提供信息采集功能的前端设备组成的硬件支持、相关底层技术支持,与海量信息数据;技术层则主要包括基于各类识别技术构建的软件产品、解决方案和技术平台;应用层则包括了各类视觉人工智能的应用场景。(三)视觉人工智能行业市场规模与行业构成作为人工智能产业中应用最为广泛的技术之一,计算机视觉技术拥有前景广阔的庞大市场。在2017年的爆发式增长后,我国计算机视觉市场近几年的增长趋缓,但仍处于较高水平。根据高工产研机器人研究所的数据,2019年中国计算机视觉应用市场达14.56亿美元。而根据沙利文咨询出具的研究,2019年中国计算机视觉市场规模达到219.6亿元。目前,视觉人工智能被广泛应用于各个行业,包括安防、零售、营销、医疗等等。其中,根据亿欧数据的研究,2018年中国计算机人脸识别市场中安防场景的应用占61.2%,根据前瞻研究院数据,2020年中国计算机视觉应用层份额中,安防影像分析占67.9%,国内明确的应用场景和强大的客户需求让AI技术在安防行业快速落地。在安防行业,视觉人工智能的应用场景包括门禁、智能摄像头等,依托人像识别技术,安防排查和管理效率得到显著提升。同时,根据中科院发布的《2019年人工智能发展白皮书》等,目前计算机视觉技术除了安防之外,较为典型的应用场景还包括:自动驾驶汽车需要使用计算机视觉技术。特斯拉等汽车制造商已经通过摄像头、激光雷达、雷达和超声波传感器从环境中获取图像,研发自动驾驶汽车来探测目标、车道标志和交通信号,从而安全驾驶。由于90%的医疗数据都是基于图像的,因此医学中的计算机视觉有很多用途。比如启用新的医疗诊断方法,分析X射线,X光检查,AI诊疗等。计算机视觉技术可以帮助工业制造商更安全、更智能、更有效地运行,比如预测性维护设备故障,对包装和产品质量进行监控,并通过计算机视觉技术识别和减少不合格产品。传统翻译采用人工查词的方式,不但耗时长,而且错误率高。图像识别技术的出现大幅提升了翻译的效率和准确度,用户通过简单的拍照、截图或划线就能得到准确的翻译结果。(四)视觉人工智能技术的场景应用举例视觉人工智能目前被广泛应用于多个行业,其功能和应用涉及到数据采集端终端,数据传输,数据存储、处理和输出端云端,通过云端和终端的密切配合,最终实现有效结果的输出。以安防场景为例,在一个完整的端云架构中,终端IoT设备主要用于数据采集,例如摄像机通过拍摄视频来采集数据,然后终端设备通过传播介质将数据传输至云端,再由云端进行批量的分析处理,最后输出分析结果。由于终端设备需要更多地考虑功耗和成本,过去在端侧仅部署较小的算力,更依靠云侧算力的支持。在数据呈现指数级增长的今天,一方面终端的视频流数据快速增长加重了传输渠道的负载,导致原有带宽无法支撑数据的及时、有效传输,进而影响了云端算力的科学调度;另一方面,数据量的指数级增长大幅提高了云端对并行运算数据峰值的要求,云侧的部署成本随着数据处理需求的极值增长而显著提高,但在数据处理的―平峰期,云端算力将存在无法得到充分、有效运用的情形。为了更好地平衡云侧和端侧的算力分布,实现整体效率的最大化,目前通过提升端侧和边缘侧的智能化水平和算力,实现整体算力分布的前置成为行业的新趋势。通过将部分算力和分析程序前置到终端设备,终端可以实现对数据的预处理,仅需将部分特征数据传至云端,甚至在本地完成对数据的完整分析。通过分布式算力部署,端侧设备形成的数据处理集群逐步向云侧设备融合。随着系统架构的不断优化,一方面这将增加有效算力,缓解带宽压力,减少设备的成本投入,另一方面数据的本地处理也能有效规避云侧分析带来的数据安全、隐私保护等风险。随着端侧芯片能够灵活支持更多算法,在云端集中的算力部署也将更加合理,最终实现―端云协同的协同效应,即架构内算力、成本、时延、功耗的最优平衡。为实现这一效果,端侧对芯片的兼容性和灵活性有更高的要求,在控制成本和功耗的同时提升算力,从而实现云端部署和应用场景的灵活适配。互联网+电子商务巩固和增强我国电子商务发展领先优势,大力发展农村电商、行业电商和跨境电商,进一步扩大电子商务发展空间。电子商务与其他产业的融合不断深化,网络化生产、流通、消费更加普及,标准规范、公共服务等支撑环境基本完善。(一)积极发展农村电子商务开展电子商务进农村综合示范,支持新型农业经营主体和农产品、农资批发市场对接电商平台,积极发展以销定产模式。完善农村电子商务配送及综合服务网络,着力解决农副产品标准化、物流标准化、冷链仓储建设等关键问题,发展农产品个性化定制服务。开展生鲜农产品和农业生产资料电子商务试点,促进农业大宗商品电子商务发展。(二)大力发展行业电子商务鼓励能源、化工、钢铁、电子、轻纺、医药等行业企业,积极利用电子商务平台优化采购、分销体系,提升企业经营效率。推动各类专业市场线上转型,引导传统商贸流通企业与电子商务企业整合资源,积极向供应链协同平台转型。鼓励生产制造企业面向个性化、定制化消费需求深化电子商务应用,支持设备制造企业利用电子商务平台开展融资租赁服务,鼓励中小微企业扩大电子商务应用。按照市场化、专业化方向,大力推广电子招标投标。(三)推动电子商务应用创新鼓励企业利用电子商务平台的大数据资源,提升企业精准营销能力,激发市场消费需求。建立电子商务产品质量追溯机制,建设电子商务售后服务质量检测云平台,完善互联网质量信息公共服务体系,解决消费者维权难、退货难、产品责任追溯难等问题。加强互联网食品药品市场监测监管体系建设,积极探索处方药电子商务销售和监管模式创新。鼓励企业利用移动社交、新媒体等新渠道,发展社交电商、粉丝经济等网络营销新模式。(四)加强电子商务国际合作鼓励各类跨境电子商务服务商发展,完善跨境物流体系,拓展全球经贸合作。推进跨境电子商务通关、检验检疫、结汇等关键环节单一窗口综合服务体系建设。创新跨境权益保障机制,利用合格评定手段,推进国际互认。创新跨境电子商务管理,促进信息网络畅通、跨境物流便捷、支付及结汇无障碍、税收规范便利、市场及贸易规则互认互通。互联网+绿色生态推动互联网与生态文明建设深度融合,完善污染物监测及信息发布系统,形成覆盖主要生态要素的资源环境承载能力动态监测网络,实现生态环境数据互联互通和开放共享。充分发挥互联网在逆向物流回收体系中的平台作用,促进再生资源交易利用便捷化、互动化、透明化,促进生产生活方式绿色化。互联网+人工智能依托互联网平台提供人工智能公共创新服务,加快人工智能核心技术突破,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用,培育若干引领全球人工智能发展的骨干企业和创新团队,形成创新活跃、开放合作、协同发展的产业生态。(一)培育发展人工智能新兴产业建设支撑超大规模深度学习的新型计算集群,构建包括语音、图像、视频、地图等数据的海量训练资源库,加强人工智能基础资源和公共服务等创新平台建设。进一步推进计算机视觉、智能语音处理、生物特征识别、自然语言理解、智能决策控制以及新型人机交互等关键技术的研发和产业化,推动人工智能在智能产品、工业制造等领域规模商用,为产业智能化升级夯实基础。(二)推进重点领域智能产品创新鼓励传统家居企业与互联网企业开展集成创新,不断提升家居产品的智能化水平和服务能力,创造新的消费市场空间。推动汽车企业与互联网企业设立跨界交叉的创新平台,加快智能辅助驾驶、复杂环境感知、车载智能设备等技术产品的研发与应用。支持安防企业与互联网企业开展合作,发展和推广图像精准识别等大数据分析技术,提升安防产品的智能化服务水平。(三)提升终端产品智能化水平着力做大高端移动智能终端产品和服务的市场规模,提高移动智能终端核心技术研发及产业化能力。鼓励企业积极开展差异化细分市场需求分析,大力丰富可穿戴设备的应用服务,提升用户体验。推动互联网技术以及智能感知、模式识别、智能分析、智能控制等智能技术在机器人领域的深入应用,大力提升机器人产品在传感、交互、控制等方面的性能和智能化水平,提高核心竞争力。人工智能行业面临的机遇与挑战(一)以新基建为代表的扶持政策助力人工智能行业发展在国内大力发展新基建的背景下,数据中心和海量网络的建设承载着数据的指数型增长。如今的智慧城市仍强调基建和信息传输效率,但与过往不同的是,其技术特征演化为万物互联与基于软件定义的城市服务。随着万物互联的需求日趋多样和复杂,集成电路与数据中心将迎来下一轮的需求增长的爆发。各终端不仅需要具备数据处理能力,还需要能与云端产生实时而灵活的互动,并衍生出更多针对算法和基建的投入,从而持续刺激5G、集成电路、人工智能等领域的发展。随着国际间科技实力的竞争逐渐激化,各国政府都先后出台了针对人工智能发展的支持性政策,并将其上升至国家战略层面。在中国,政府正通过多种形式支持人工智能的发展:中国已经形成了科技部、国家发改委、工信部、中国工程院等多个部门参与的人工智能联合推进机制,从2015年开始先后发布多则支持人工智能发展的政策,为人工智能技术发展和落地提供大量的项目发展基金,并且对人工智能人才的引入和企业创新提供支持。这些政策给行业发展提供坚实政策导向的同时,也给资本市场和行业利益相关者发出积极信号。在推动市场应用方面,中国政府在推动人工智能技术与实体产业深度融合的同时,也在智慧城市的转型中与人工智能产业进行密切合作。作为技术应用的重要采购方,中国政府在落地智慧安防同时,也成为了推动人工智能产业发展的主导力量之一。(二)5G等技术创新推动人工智能的技术变革与应用渗透随着算法、芯片技术的日益成熟,人工智能技术具备了大规模投放市场的基础条件。而随着近年来新基建的集中投入,5G等底层技术发展进入全面加速状态。5G技术因其大带宽、低时延、广覆盖的特征,成为新基建其他产业的根基技术。底层技术的突破让人工智能技术在更多终端上的大规模应用成为了可能,这也使得人工智能化的物联网终端可以广泛地在各个行业得到大规模的应用,从而使得人工智能技术在更多的行业场景落地。而因为更多的场景能够使用人工智能进行设备处理和数据传输,更多的边缘终端将持续采集海量数据,进而驱动人工智能技术得到进一步的发展、创新基础设施赋能各产业的数字化转型。同时,智能终端在物联网时代的普及将为人工智能芯片提供重要市场机遇。智能终端在不同应用场景下对算力、功耗、时延的多元化需求,使得人工智能芯片在端侧可以拥有更多元化的应用场景,而智能终端在各场景的广泛运用也离不开人工智能芯片的低成本化并兼具高度可适配性。未来5G和物联网引领的智能终端需求爆发将为人工智能芯片的研发、生产和应用带来更多可能,而人工智能芯片将作为AI的底层基础,真正实现智联万物,让AI无处不在。(三)用户需求提升和技术扩散带来人工智能行业应用场景拓展随着人工智能技术的日渐成熟和扩散,通用化、模块化的算法框架降低了人工智能技术的使用门槛,更多行业和企业能够基于人工智能技术对现有的产业和业务进行边际优化与改善,人工智能技术和传统产业的融合程度日益加深;另一方面,用户新需求的不断涌现激活了各个领域的人工智能企业发展潜能。在金融、交通、教育、公共安全、商业服务、能源、零售、医疗等行业,人工智能技术的应用均在持续挖掘和拓展。美国在人工智能基础层领域,尤其在AI芯片设计研发领域,有显著的产业优势和技术壁垒,美国芯片厂商是国内很多AI技术层、应用层企业最重要的供应商之一。随着全球科技产业链不断受国际局势影响,我国相对薄弱的基础层可能难以支撑产业链中下游的发展,这无疑会对国内该行业的生产供货和研发革新带来风险。长期而言,底层技术的自主可控是国内建立人工智能完整产业生态链和参与全球科技竞争的基础,也是国内各人工智能企业最重要的核心竞争力之一。因此,在新基建的背景下,我国政府对人工智能的政策方针转向系统性全面发展,持续增大针对基础技术领域的投资,进一步完善国内人工智能的产业链、创新链、人才链,同时业内也在积极探索将自主可控列入新基建的产品测评,与质量、安全等因素并重。人工智能芯片市场的未来发展趋势(一)芯片行业整体受到政策鼓励支持,AI芯片发展受益国内需求和国产化进程芯片是信息化时代、数字化时代的基石。中国作为全球最大的半导体消费市场,芯片自给率不足,严重依赖进口。为发展国产芯片,实现进口替代,近年来政府出台了一系列政策支持国产芯片行业发展。2020年8月,《新时期促进集成电路产业和软件产业高质量发展的若干政策》提出将从财税、投融资、研究开发、进出口、人才、知识产权、市场应用、国际合作等8个方面对集成电路和软件产业进行扶持,以加快集成电路和软件产业发展。AI芯片的发展将受益于芯片国产化的政策支持和庞大的国内市场需求。(二)AI芯片研发将从技术导向转向场景导向目前AI芯片设计更多的是从技术需求的角度出发,如芯片架构的选择、芯片性能指标提升等。随着AI芯片领域的竞争越来越激烈,各芯片企业除了在技术层面有所突破,还需加大应用场景的布局,以抢占更多的发展机遇。为了适应碎片化的应用市场,未来的芯片设计需要以客户终端需求为导向,从需求量、商业落地模式、市场壁垒等各个方面综合分析落地的可行性,借助场景落地实现AI芯片的规模发展。(三)AI芯片发展从侧重云端向端云一体化发展云端芯片聚焦非实时、长周期数据的大数据分析,能够支持大量运算共同运行,目前云端AI芯片应用已经相对成熟。随着智能音箱、自动驾驶、无人机、安防监控等应用的丰富,云端的部分推理乃至训练算力将迁移至边缘和终端侧,支撑本地业务的实时智能化处理与执行。边缘和终端侧对AI芯片的需求更为多样、更强调低功耗低成本、技术要求相对较低。得益于人工智能等多种因素的推动,边缘计算将逐渐在公共安防、智能家居、智能交通等诸多领域应用。随着边缘计算兴起,端云一体化的算力布局方案渐成主流,不仅可以实现对算法结构的优化,还从本质上赋能各边缘和终端应用,提供更好更完整的解决方案。人工智能整体市场未来发展趋势(一)人工智能端侧与云侧的融合与协作是大势所趋中国物联网市场在未来三年预计将保持20%以上的增长速度,在2021年达到26,251亿元的市场规模,而物联网应用的渗透将带动对物联网芯片的需求。据MarketsandMarkets预计,2020年全球物联网芯片市场规模将达109.41亿美元,对云侧和端侧的要求将更加全面,在云侧寻求算力、响应时间、成本等因素的最优配置,在端侧提升算力和让数据尽可能实现本地处理。一方面,物联网将有更多的应用场景对延时更为敏感,例如智能家居、智能工业、智能医疗需要端侧设备的实时响应。另一方面,5G时代的无线网络将具有更低的时延性,大规模的数据流动将增加传输和云端的压力,这同样需要云侧和端侧的密切配合。目前云侧和端侧的配合主要体现在云端训练神经网络,再由终端或边缘端设备进行推理。未来,随着端侧设备的进一步迭代,设备能负载更多的计算分析工作,甚至可以承担部分的训练过程。另一方面,计算力的前置是行业发展的重要趋势,未来云侧的边界也会逐渐向终端和数据源头推进,整合云侧和端侧的架构,将AI处理分布在各个网络设备中。随着云侧和端侧的技术走向成熟,其协作的适应性和灵活性将成为下一阶段的竞争重点。未来云端和终端设备及其连接网络可能会构成一个庞大的AI处理网络,云端能够实时控制、调整终端的算法,重新定义、迭代硬件;而终端也能将数据及时反哺给云端进行自适应优化;训练和推理的相互协作、互补整合也将成为技术的一大探索方向,形成完整协同的智能生态。(二)视觉人工智能行业的竞争维度逐步从单一技术领先性竞争转向综合服务能力竞争AI芯片与算法都是人工智能行业的关键底层技术,两者的发展彼此交互、相互融合、相互促进,共同助推终端智能和AI生态的发展。以安防行业为例,前端采集设备和云端软件的协调、优化能有效提升整体方案运行的稳定性和效率。随着AI算法技术的不断进步,视觉人工智能企业技术成熟度均已达到较高水平,同行业企业间的技术差异正在逐渐缩小,行业技术进步所带来的边际改善效应正在衰减。在更多场景下,竞争者之间的技术水平都已经可以较好地满足用户的需求。故而,视觉人工智能领先企业间的竞争正从过往的以技术领先性为核心的技术研发竞争逐步转向以用户需求理解和应用场景落地为核心的技术应用竞争。以上变化也对企业的技术研发能力和综合服务能力提出了新的要求,过去在产业链单一环节的专业化优势正趋于弱化,而如何基于场景需要,打通底层的算法、芯片等核心技术,如何为客户提供全面、综合、成本更优、体验更好的方案和服务正成为未来行业竞争的关键因素。(三)核心城市日渐成为视觉人工智能技术等AI技术创新和应用的重要载体和试验地随着人工智能技术的发展和城市治理水平的内在需求趋强,城市日益成为人工智能技术创新融合应用的重要载体和试验地。在全球范围内,包括旧金山、纽约、伦敦、新加坡、东京、北京、上海、深圳等核心城市都在形成人工智能技术创新和应用的集聚。而中国政府正在大力推动的新型基础设施建设,核心城市也是建设的主战场和示范基地。未来,能抢占核心城市市场的人工智能企业也将拥有更丰富的技术落地场景,进而拥有更强的竞争优势。视觉人工智能技术作为目前应用最成熟的AI技术之一,未来将不仅局限在与公共安全相关的领域,有望在城市的发展和治理中发挥更加重要的作用。互联网+协同制造推动互联网与制造业融合,提升制造业数字化、网络化、智能化水平,加强产业链协作,发展基于互联网的协同制造新模式。在重点领域推进智能制造、大规模个性化定制、网络化协同制造和服务型制造,打造一批网络化协同制造公共服务平台,加快形成制造业网络化产业生态体系。(一)大力发展智能制造以智能工厂为发展方向,开展智能制造试点示范,加快推动云计算、物联网、智能工业机器人、增材制造等技术在生产过程中的应用,推进生产装备智能化升级、工艺流程改造和基础数据共享。着力在工控系统、智能感知元器件、工业云平台、操作系统和工业软件等核心环节取得突破,加强工业大数据的开发与利用,有效支撑制造业智能化转型,构建开放、共享、协作的智能制造产业生态。(二)发展大规模个性化定制支持企业利用互联网采集并对接用户个性化需求,推进设计研发、生产制造和供应链管理等关键环节的柔性化改造,开展基于个性化产品的服务模式和商业模式创新。鼓励互联网企业整合市场信息,挖掘细分市场需求与发展趋势,为制造企业开展个性化定制提供决策支撑。(三)提升网络化协同制造水平鼓励制造业骨干企业通过互联网与产业链各环节紧密协同,促进生产、质量控制和运营管理系统全面互联,推行众包设计研发和网络化制造等新模式。鼓励有实力的互联网企业构建网络化协同制造公共服务平台,面向细分行业提供云制造服务,促进创新资源、生产能力、市场需求的集聚与对接,提升服务中小微企业能力,加快全社会多元化制造资源的有效协同,提高产业链资源整合能力。(四)加速制造业服务化转型鼓励制造企业利用物联网、云计算、大数据等技术,整合产品全生命周期数据,形成面向生产组织全过程的决策服务信息,为产品优化升级提供数据支撑。鼓励企业基于互联网开展故障预警、远程维护、质量诊断、远程过程优化等在线增值服务,拓展产品价值空间,实现从制造向制造+服务的转型升级。加强资源环境动态监测针对能源,矿产资源,水、大气、森林、草原、湿地、海洋等各类生态要素,充分利用多维地理信息系统、智慧地图等技术,结合互联网大数据分析,优化监测站点布局,扩大动态监控范围,构建资源环境承载能力立体监控系统。依托现有互联网、云计算平台,逐步实现各级资源环境动态监测信息互联共享。加强重点用能单位能耗在线监测和大数据分析。(一)大力发展智慧环保利用智能监测设备和移动互联网,完善污染物排放在线监测系统,增加监测污染物种类,扩大监测范围,形成全天候、多层次的智能多源感知体系。建立环境信息数据共享机制,统一数据交换标准,推进区域污染物排放、空气环境质量、水环境质量等信息公开,通过互联网实现面向公众的在线查询和定制推送。加强对企业环保信用数据的采集整理,将企业环保信用记录纳入全国统一的信用信息共享交换平台。完善环境预警和风险监测信息网络,提升重金属、危险废物、危险化学品等重点风险防范水平和应急处理能力。(二)完善废旧资源回收利用体系利用物联网、大数据开展信息采集、数据分析、流向监测,优化逆向物流网点布局。支持利用电子标签、二维码等物联网技术跟踪电子废物流向,鼓励互联网企业参与搭建城市废弃物回收平台,创新再生资源回收模式。加快推进汽车保险信息系统、以旧换再管理系统和报废车管理系统的标准化、规范化和互联互通,加强废旧汽车及零部件的回收利用信息管理,为互联网企业开展业务创新和便民服务提供数据支撑。(三)建立废弃物在线交易系统鼓励互联网企业积极参与各类产业园区废弃物信息平台建设,推动现有骨干再生资源交易市场向线上线下结合转型升级,逐步形成行业性、区域性、全国性的产业废弃物和再生资源在线交易系统,完善线上信用评价和供应链融资体系,开展在线竞价,发布价格交易指数,提高稳定供给能力,增强主要再生资源品种的定价权。人工智能芯片行业人工智能芯片指应用在人工智能算法加速,主要实现大规模并行计算的芯片。而在更广泛的概念下,任何应用在人工智能领域的芯片都可被称为人工智能芯片。(一)人工智能芯片以技术路线分类深度学习架构下的人工智能芯片以技术路线进行划分,主要包括GPU、FPGA、ASIC、ASIP等类别。GPU使用SIMD让多个执行单元同时处理不同的数据,其离散化和分布式的特征,以及用矩阵运算替代布尔运算的设计使之适合处理深度学习所需要的非线性离散数据。与同样基于冯•诺依曼架构的CPU不同的是,在传统的冯•诺依曼结构中,CPU每执行一条指令都需要存储读取、指令分析、分支跳转才能进行运算,从而限制了处理器的性能;而GPU大部分的晶体管可以组成各类专用电路、多条流水线,运算单元明显增多,适合大规模的并行计算。GPU拥有更多的ALU用于数据处理,这样的结构适合对密集型数据进行并行处理,获得高于CPU几十倍甚至上千倍的运行速度。在云端,通用GPU,被广泛应用于深度神经网络训练和推理。但是,GPU并非专门针对AI算法,在执行算法中能耗相对较高、效率相对较低,有一定的时延问题。FPGA利用门电路直接运算,而用户可以自由定义这些门电路和存储器之间的布线,改变执行方案。其基本原理是集成大量的基本门电路以及存储器,通过大量的可编程逻辑单元实现针对性的算法设计,即实现以硬件定义软件。FPGA通过可编程逻辑综合,在并行计算上能够获得和GPU接近的并行计算性能,相比CPU,有明显的性能提升,同时在功耗上优势明显在深度学习算法仍处于高速迭代的状态下,FPGA因其可重构特性而具有显著优势。FPGA市场化的阻碍主要在于高昂的硬件和开发成本,编程相对复杂,为实现重构而降低了计算资源占比,整体运算能力受到影响。ASIC则为专用定制芯片的统称,在架构、设计、成本等方面存在更大的多样性,其中VPU是为图像处理和视觉处理设计的定制芯片。ASIC的架构相对简单,性能和功耗与通用型产品相比更低。由于不需要包含FPGA用于实现重构的可配置片上路由与连线,相同工艺的ASIC计算芯片可以拥有FPGA5-10倍的运算速度,实现PPA最优化设计。ASIC针对场景的定制化设计使其更适合终端推理场景,而如今它的主要劣势在于初期设计的资金投入和研发周期,且针对性设计限制了芯片的通用性。ASIP是一种新型的定制化指令集的处理器芯片,它为某个或某一类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论