2021年河南省周口市项城第二高级中学分校高三数学理联考试卷含解析_第1页
2021年河南省周口市项城第二高级中学分校高三数学理联考试卷含解析_第2页
2021年河南省周口市项城第二高级中学分校高三数学理联考试卷含解析_第3页
2021年河南省周口市项城第二高级中学分校高三数学理联考试卷含解析_第4页
2021年河南省周口市项城第二高级中学分校高三数学理联考试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年河南省周口市项城第二高级中学分校高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:①当x>0时,f(x)=e﹣x(x﹣1);②函数f(x)有2个零点;③f(x)<0的解集为(﹣∞,﹣1)∪(0,1),④?x1,x2∈R,都有|f(x1)﹣f(x2)|<2.其中正确命题的个数是()A.4 B.3 C.2 D.1参考答案:B【考点】2K:命题的真假判断与应用.【分析】根据f(x)为奇函数,设x>0,得﹣x<0,可求出f(x)=e﹣x(x﹣1)判定①正确;由f(x)解析式求出﹣1,1,0都是f(x)的零点,判定②错误;由f(x)解析式求出f(x)>0的解集,判断③正确;分别对x<0和x>0时的f(x)求导,根据导数符号判断f(x)的单调性,根据单调性求f(x)的值域,可得?x1,x2∈R,有|f(x1)﹣f(x2)|<2,判定④正确.【解答】解:对于①,f(x)为R上的奇函数,设x>0,则﹣x<0,∴f(﹣x)=e﹣x(﹣x+1)=﹣f(x),∴f(x)=e﹣x(x﹣1),①正确;对于②,∵f(﹣1)=0,f(1)=0,且f(0)=0,∴f(x)有3个零点,②错误;对于③,x<0时,f(x)=ex(x+1),易得x<﹣1时,f(x)<0;x>0时,f(x)=e﹣x(x﹣1),易得0<x<1时,f(x)<0;∴f(x)<0的解集为(﹣∞,﹣1)∪(0,1);③正确;对于④,x<0时,f′(x)=ex(x+2),得x<﹣2时,f′(x)<0,﹣2<x<0时,f′(x)>0;∴f(x)在(﹣∞,0)上单调递减,在(﹣2,0)上单调递增;∴x=﹣2时,f(x)取最小值﹣e﹣2,且x<﹣2时,f(x)<0;∴f(x)<f(0)=1;即﹣e﹣2<f(x)<1;x>0时,f′(x)=e﹣x(2﹣x);∴f(x)在(0,2)上单调递增,在(2,+∞)上单调递减;x=2时,f(x)取最大值e﹣2,且x>2时,f(x)>0;∴f(x)>f(0)=﹣1;∴﹣1<f(x)≤e﹣2;∴f(x)的值域为(﹣1,e﹣2]∪[﹣e﹣2,1);∴?x1,x2∈R,都有|f(x1)﹣f(x2)|<2;④正确;综上,正确的命题是①③④,共3个.故选:B.2.给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A.①② B.②③ C.③④ D.①④参考答案:B【考点】函数单调性的判断与证明.【分析】本题所给的四个函数分别是幂函数型,对数函数型,指数函数型,含绝对值函数型,在解答时需要熟悉这些函数类型的图象和性质;①为增函数,②为定义域上的减函数,③y=|x﹣1|有两个单调区间,一增区间一个减区间,④y=2x+1为增函数.【解答】解:①是幂函数,其在(0,+∞)上即第一象限内为增函数,故此项不符合要求;②中的函数是由函数向左平移1个单位长度得到的,因为原函数在(0,+∞)内为减函数,故此项符合要求;③中的函数图象是由函数y=x﹣1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知该项符合要求;④中的函数图象为指数函数,因其底数大于1,故其在R上单调递增,不合题意.故选B.3.已知变量满足约束条件若目标函数仅在点处取得最小值,则实数的取值范围为(

)A.

B.

C.

D. 参考答案:D略4.已知(

)A.3

B.1

C.

D.参考答案:C5.已知数列=

A.8

B.10

C.15

D.21参考答案:D6.已知是圆内一点,则过点最长的弦所在的直线方程是(

)A.

B.

C.

D.参考答案:B7.设是定义在R上以2为周期的偶函数,已知,则函数在(1,2)上

A.是增函数,且<0

B.是增函数,且>0

C.是减函数,且<0

D.是减函数,且>0参考答案:答案:D8.若实数a,b,c成等差数列,点P(—1,0)在动直线ax+by+c=0上的射影为M,点N(3,3),则|MN|的最大值是参考答案:A9.已知定义在R上的奇函数f(x)满足(),则(

)A. B.C. D.参考答案:B设g(x)=,定义在R上的奇函数f(x),所以g(x)是奇函数,x>0时,g′(x)=,因为函数f(x)满足2f(x)﹣xf'(x)>0(x>0),所以g′(x)>0,所以g(x)是增函数,g(﹣)=<,可得:.故选:B.

10.执行如图所示程序框图所表达的算法,若输出的x值为48,则输入的x值为(

) A.3 B.6 C.8 D.12参考答案:B考点:循环结构.专题:图表型.分析:第一次进入循环时,x←2×x,n=1+1=2,满足n≤3,执行循环体,依此类推,最后一次:x←2×x=48,n=1+3=4,不满足n≤3,退出循环体,利用得到最后一次中x的值将以上过程反推,从而得出输入的x值.解答: 解:模拟程序的执行情况如下:x←2x,n=1+1=2,满足n≤3,执行循环体;x=2×(2x)=4x,n=2+1=3,满足n≤3,执行循环体;x=2×(4x)=8x,n=3+1=4,不满足n≤3,退出循环体,由8x=48即可得x=6.则输入的x值为:6.故选B.点评:本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用列举法对数据进行管理.二、填空题:本大题共7小题,每小题4分,共28分11.若方程的各个实根所对应的点均在直线的同侧,则实数的取值范围是__________.参考答案:解:方程的根显然x≠0,原方程等价于x3+a=,原方程的实根是曲线y=x3+a与曲线y=的交点的横坐标,而曲线y=x3+a是由曲线y=x3向上或向下平移|a|个单位而得到的,若交点(xi,))(i=1,2,…,k)均在直线y=x的同侧

因直线y=x与y=交点为:(-2,-2),(2,2);所以结合图象可得a>0且x3+a>-2且x<-2或者a<0且x3+a<2且x>2,解得a的范围是12.在三棱锥中,是边长为3的等边三角形,,二面角的大小为120°,则此三棱锥的外接球的表面积为

.参考答案:21π由题意得,得到,取AB中点为D,SB中点为M,得到为二面角的平面角,由题意可知,设三角形ABC的外心为,则,球心为过点M的面ABS的垂线与过点O’的面ABC的垂线的交点,在四边形中,可求出,所以,所以球的表面积。13.函数在区间[2,4]上的最大值是_______________。参考答案:1略14.在平面直角坐标系中,已知直线的参数方程为(为参数),曲线的参数方程为(为参数),若直线与曲线相交于两点,则=____.参考答案:【知识点】参数和普通方程互化【试题解析】因为,联立得得

,得

故答案为:15.2016年夏季大美青海又迎来了旅游热,甲、乙、丙三位游客被询问是否去过陆心之海青海湖,海北百里油菜花海,茶卡天空之境三个地方时,甲说:我去过的地方比乙多,但没去过海北百里油菜花海;乙说:我没去过茶卡天空之境;丙说:我们三人去过同一个地方.由此可判断乙去过的地方为.参考答案:陆心之海青海湖【考点】F4:进行简单的合情推理.【分析】可先由乙推出,可能去过陆心之海青海湖或茶卡天空之境,再由甲推出乙只能是去过陆心之海青海湖,茶卡天空之境中的任一个,再由丙即可推出结论【解答】解:由乙说:我没去过茶卡天空之境,则乙可能去过陆心之海青海湖或茶卡天空之境,但甲说:我去过的城市比乙多,但没去过海北百里油菜花海,则乙只能是去过陆心之海青海湖,茶卡天空之境中的任一个,再由丙说:我们三人去过同一个地方,则由此可判断乙去过的地方为陆心之海青海湖.故答案为:陆心之海青海湖16..双曲线上一点P(4,3)到双曲线的左、右焦点的距离之差等于4,则b的值为

.参考答案:17.已知扇形的半径为10㎝,圆心角为120°,则扇形的面积为_____________.参考答案:㎝2略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为,若直线l过点P,且倾斜角为,圆C以M为圆心,3为半径.(Ⅰ)求直线l的参数方程和圆C的极坐标方程;(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|?|PB|.参考答案:【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)根据题意直接求直线l的参数方程和圆C的极坐标方程.(II)把代入x2+(y﹣3)2=9,利用参数的几何意义,即可得出结论.【解答】解:(Ⅰ)直线l的参数方程为(t为参数),(答案不唯一,可酌情给分)圆的极坐标方程为ρ=6sinθ.(Ⅱ)把代入x2+(y﹣3)2=9,得,设点A,B对应的参数分别为t1,t2,∴t1t2=﹣7,则|PA|=|t1|,|PB|=|t2|,∴|PA|?|PB|=7.19.已知,(Ⅰ)对一切,恒成立,求实数的取值范围;(Ⅱ)当时,求函数在上的最值;(Ⅲ)证明:对一切,都有成立。参考答案:解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立令,则,在上,在上,因此,在处取极小值,也是最小值,即,所以(Ⅱ)当,,由得.

①当时,在上,在上因此,在处取得极小值,也是最小值..由于因此,

②当,,因此上单调递增,所以,(Ⅲ)证明:问题等价于证明,

由(Ⅱ)知时,的最小值是,当且仅当时取得,设,则,易知,当且仅当时取到,但从而可知对一切,都有成立略20.已知函数在处取得极值.(Ⅰ)求实数的值;(Ⅱ)关于的方程在区间上有两个不同的实数根,求实数的取值范围;参考答案:解:(1)

时,取得极值,

故解得经检验符合题意.(2)由知

由,得

令则在区间上恰有两个不同的实数根等价于在区间上恰有两个不同的实数根.

当时,,于是在上单调递增;

当时,,于是在上单调递减.依题意有,解得,略21.(本小题满分12分)在四棱锥中,平面平面,,在锐角中,并且,(1)点是上的一点,证明:平面平面;(2)若与平面成角,当面平面时,求点到平面的距离.参考答案:解法一(1)因为,,由勾股定理得,因为平面平面,平面平面=,面,所以平面面,所以平面平面

………6分(2)如图,因为平面,所以平面平面,所以,做于,所以面,,设面面=,面平面所以面面,所以,取中点,得为平行四边形,由平面边长得为中点,所以

………12分解法二(1)同一(2)在平面过做垂线为轴,由(1),以为原点,为轴建立空间直角坐标系,设平面法向量为,设,锐角所以,由,解得,,,解得或(舍)设,解得因为面平面,,所以面法向量为,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论