版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年四川省南充市搬罾中学高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知曲线的一条切线的斜率为,则切点的横坐标为(
)
A.3
B.2
C.1
D.参考答案:A函数的定义域为,函数的导数为,由,得,解得或(舍去),选A.2.在下列幂函数中,是偶函数且在上是增函数的是(
)A.
B.
C.
D.参考答案:D.3.执行如图所示的程序框图,若输入,则输出A.
B.
C.
D.参考答案:B4.已知P(x,y)为平面区域内的任意一点,当该区域的面积为3时,z=2x﹣y的最大值是()A.6 B.3 C.2 D.1参考答案:A【考点】简单线性规划.【分析】由约束条件作出可行域,求出使可行域面积为3的a值,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:由作出可行域如图,由图可得A(a,a),D(a,a),B(a+1,a+1),C(a+1,﹣a﹣1)由该区域的面积为3时,×1=3,得a=1.∴A(1,1),C(2,﹣2)化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过C点时,z最大,等于2×2﹣(﹣2)=6.故选:A.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.如图是一个四棱锥的三视图,则该几何体的体积为()A. B. C. D.参考答案:A【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】根据几何体的三视图,得出该几何体是底面为直角梯形的直四棱锥,结合图中数据求出它的体积.【解答】解:根据几何体的三视图,得该几何体是如图所示的直四棱锥;且四棱锥的底面为梯形,梯形的上底长为1,下底长为4,高为4;所以,该四棱锥的体积为V=S底面积?h=.故选:A.【点评】本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目.6.设有不同的直线a,b和不同的平面α,β,给出下列四个命题:①若a∥α,b∥α,则a∥b;②若a∥α,a∥β,则α∥β;③若a⊥α,b⊥α,则a∥b;④若a⊥α,a⊥β,则α∥β.其中正确的个数是()A.1 B.2 C.3 D.4参考答案:B解:对于①,若a∥α,b∥α,则直线a和直线b可以相交也可以异面,故①错误;对于②,若a∥α,a∥β,则平面a和平面β可以相交,故②错误;对于③,若a⊥α,b⊥α,则根据线面垂直出性质定理,a∥b,故③正确;对于④,若a⊥α,a⊥β,则α∥β成立;故选:B.7.(5分)下面命题中假命题是()A.?x∈R,3x>0B.?α,β∈R,使sin(α+β)=sinα+sinβC.?m∈R,使是幂函数,且在(0,+∞)上单调递增D.命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1>3x”参考答案:D【考点】:命题的否定;命题的真假判断与应用.【专题】:规律型.【分析】:根据含有量词的命题的真假判断方法和命题的否定分别进行判断.解:A.根据指数函数的性质可知,?x∈R,3x>0,∴A正确.B.当α=β=0时,满足sin(α+β)=sinα+sinβ=0,∴B正确.C.当m=1时,幂函数为f(x)=x3,且在(0,+∞)上单调递增,∴C正确.D.命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,∴D错误.故选:D.【点评】:本题主要考查含有量词的命题的真假判断和命题的否定,比较基础.8.当时,不等式
恒成立,则实数的取值范围是(A)
(B)
(C)
(D)参考答案:A略9.(2016?沈阳一模)设全集U=R,集合A={x|y=lgx},B={﹣1,1},则下列结论正确的是()A.A∩B={﹣1} B.(?RA)∪B=(﹣∞,0) C.A∪B=(0,+∞) D.(?RA)∩B={﹣1}参考答案:D【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】先求出集合A,根据补集和交集以及并集的运算性质分别判断即可.【解答】解:根据对数函数的定义,得x>0,∴集合A={x|x>0},∴A∩B={x|x>0}∩{﹣1,1}={1},A错误;(?RA)∪B={x|x≤0}∪{﹣1,1}={x|x≤0或x=1},B错误;A∪B={x|x>0}∪{﹣1,1}={x|x>0或x=﹣1},C错误;(?RA)∩B={x|x≤0}∩{﹣1,1}={﹣1},D正确;故选:D.【点评】本题考察了集合的运算性质,考察对数函数的定义域,是一道基础题.10.已知函数是R上的偶函数,且对任意的有,当时,,则(
)A.11 B.5 C.-9 D.-1参考答案:C【分析】根据即可得出,即得出的周期为6,再根据是偶函数,以及时,,从而可求出(8)(2).【详解】;;的周期为6;又是偶函数,且时,;(8)(2).故选:.【点睛】本题主要考查偶函数和周期函数的定义,以及已知函数求值的方法.二、填空题:本大题共7小题,每小题4分,共28分11.已知集合,集合,则_______.参考答案:12.(5分)(2015?庆阳模拟)如图所示的是正方形的顶点A为圆心,边长为半径的画弧形成的图象,现向正方形内投掷一颗豆子(假设豆子不落在线上),则恰好落在阴影部分的概率为.参考答案:1﹣【考点】:几何概型.【专题】:应用题;概率与统计.【分析】:先令正方形的边长为a,则S正方形=a2,则扇形所在圆的半径也为a,则S扇形=a2,从而结合几何概型的计算公式即可求得恰好落在阴影部分的概率.解:令正方形的边长为a,则S正方形=a2,则扇形所在圆的半径也为a,则S扇形=a2,则豆子恰好落在阴影部分的概率为P=1﹣.故答案为:1﹣.【点评】:本小题主要考查扇形面积公式、几何概型等基础知识,考查运算求解能力,考查数形结合思想.关键是要求出阴影部分的面积及正方形的面积.属于基础题.13.在直角坐标系中,有一定点,若线段的垂直平分线过抛物线的焦点,则该抛物线的准线方程是
.参考答案:线段的斜率,中点坐标为。所以线段的垂直平分线的斜率为,所以OA的垂直平分线的方程是y?,令y=0得到x=.所以该抛物线的准线方程为.14.已知映射,其中,,对应法则是,对于实数,在集合中不存在原象,则的取值范围是
.参考答案:【知识点】映射的概念B1【答案解析】解析:解:在区间上是增函数,,所以A若不存在原象则【思路点拨】根据映射的概念可求解.15.实数的最小值是
.参考答案:8由题意可知,16.将函数的图象向右平移个单位,得到函数,则的表达式为__________.参考答案:∵,↓向右平移个单位,,∴.17.已知随机变量ξ的概率分布列为:ξ012P则Eξ=,Dξ=.
参考答案:1,
【分析】利用随机变量ξ的概率分布列的性质能求出Eξ和Dξ.【解答】解:由随机变量ξ的概率分布列,知:Eξ==1,Dξ=(0﹣1)2×+(1﹣1)2×+(2﹣1)2×=.故答案为:1,.【点评】本题考查离散型随机变量的分布列、数学期望、方差的求法,解题时要要认真审题,注意随机变量ξ的概率分布列的性质的合理运用,是基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值.参考答案:【考点】用空间向量求平面间的夹角;直线与平面垂直的判定.【分析】解法1)(1)直线与直线,直线与平面的垂直的转化证明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判断DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,确定直角.(2)根据公理2得出DG是平面DEF与平面ACBD的交线.利用直线平面的垂直判断出DG⊥DF,DG⊥DB,根据平面角的定义得出∠BDF是面DEF与面ABCD所成二面角的平面角,转化到直角三角形求解即可.解法2)(1)以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系,运用向量的数量积判断即可.2)由PD⊥底面ABCD,所以=(0,0,1)是平面ACDB的一个法向量;由(Ⅰ)知,PB⊥平面DEF,所以=(﹣λ,﹣1,1)是平面DEF的一个法向量.根据数量积得出夹角的余弦即可得出所求解的答案.【解答】解法1)(1)因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE?平面PDC,所以BC⊥DE.又因为PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩CB=C,所以DE⊥平面PBC.而PB?平面PBC,所以PB⊥DE.又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)如图1,在面BPC内,延长BC与FE交于点G,则DG是平面DEF与平面ACBD的交线.由(Ⅰ)知,PB⊥平面DEF,所以PB⊥DG.又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD.所以DG⊥DF,DG⊥DB故∠BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=λ,有BD=,在Rt△PDB中,由DF⊥PB,得∠DPB=∠FDB=,则tan=tan∠DPF===,解得.所以==故当面DEF与面ABCD所成二面角的大小为时,=.(解法2)(1)以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系.设PD=DC=1,BC=λ,则D(0,0,0),P(0,0,1),B(λ,1,0),C(0,1,0),=(λ1,﹣1),点E是PC的中点,所以E(0,,),=(0,,),于是=0,即PB⊥DE.又已知EF⊥PB,而ED∩EF=E,所以PB⊥平面DEF.因=(0,1,﹣1),=0,则DE⊥PC,所以DE⊥平面PBC.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)由PD⊥底面ABCD,所以=(0,0,1)是平面ACDB的一个法向量;由(Ⅰ)知,PB⊥平面DEF,所以=(﹣λ,﹣1,1)是平面DEF的一个法向量.若面DEF与面ABCD所成二面角的大小为,则运用向量的数量积求解得出cos==,解得.所以所以==故当面DEF与面ABCD所成二面角的大小为时,=.19.(本小题满分12分)已知函数在区间上单调递增,在区间上单调递减;如图,四边形中,,,为的内角的对边,且满足.(Ⅰ)证明:;(Ⅱ)若,设,,,求四边形面积的最大值.参考答案:(Ⅰ)由题意知:,解得:,
………2分
………4分……6分(Ⅱ)因为,所以,所以为等边三角形
…………8分,……………10分,,当且仅当即时取最大值,的最大值为………12分20.设D是圆上的任意一点,m是过点D且与x轴垂直的直线,E是直线m与x轴的交点,点Q在直线m上,且满足.当点D在圆O上运动时,记点Q的轨迹为曲线C.(1)求曲线C的方程;(2)已知点,过的直线交曲线C于A,B两点,交直线于点M.判定直线PA,PM,PB的斜率是否依次构成等差数列?并说明理由.参考答案:(1);(2)见解析【分析】(1)设点,,由条件的线段比例可得,,代入圆的方程中即可得解;(2)设直线的方程为,与椭圆联立得得,设,,由,结合韦达定理代入求解即可.【详解】(1)设点,,因为,点在直线上,所以,.①因为点在圆:上运动,所以.②将①式代入②式,得曲线的方程为.(2)由题意可知的斜率存在,设直线的方程为,令,得的坐标为.由,得.设,,则有,.③记直线,,的斜率分别为,,,从而,,.因为直线的方程为,所以,,所以.④把③代入④,得.又,所以,故直线,,的斜率成等差数列.【点睛】本题主要考查了直线与椭圆的位置关系,斜率的坐标表示,设而不求的数学思想,考查了计算能力,属于中档题.21.已知函数f(x)=(x﹣a)2+(x﹣b)2+(x﹣c)2+(a,b.c为实数)的最小值为m,若a﹣b+2c=3,求m的最小值.参考答案:∵f(x)=(x﹣a)2+(x﹣b)2+(x﹣c)2+=3x2﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省南平市五夫中学高二化学上学期期末试题含解析
- 福建省南平市渭田中学2021年高二生物模拟试题含解析
- 福建省南平市太平中学高三数学文联考试题含解析
- 2 《烛之武退秦师》(说课稿)-2024-2025学年高一语文下学期同步教学说课稿专辑(统编版必修下册)
- 美术教育之光
- 解密清明节气
- 填分家协议书(2篇)
- 25王戎不取道旁李 说课稿-2024-2025学年四年级上册语文统编版
- 有偿使用场地租赁合同
- 租赁山地合同
- 2025年临床医师定期考核必考复习题库及答案(900题)
- 反恐应急预案3篇
- 2025年中国社会科学院外国文学研究所专业技术人员招聘3人历年高频重点提升(共500题)附带答案详解
- 微更新视角下老旧社区公共空间适老化设计策略研究
- 《高血压治疗新进展》课件
- 小红书营销师(初级)认证理论知识考试题及答案
- 贵州省部分学校2024-2025学年高三年级上册10月联考 化学试卷
- 期末综合试卷(试题)2024-2025学年人教版数学五年级上册(含答案)
- 2023-2024学年贵州省贵阳外国语实验中学八年级(上)期末数学试卷(含答案)
- 国家电网公司电力安全工作规程营销习题库(含答案)
- 2024年新能源汽车概论考试题库
评论
0/150
提交评论