版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学三轮冲刺考前查漏补缺《三角形与全等三角形》(基础版)一 、选择题1.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有(
)A.2对
B.3对
C.4对
D.6对2.如图,下列图形中,每个正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()3.已知△ABC,利用尺规作图,作BC边上的高AD,正确的是()A.B.C.D.4.如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A.2B.4C.6D.85.已知一个三角形三个内角度数的比是l:5:6,则其最大内角的度数为()A.60°B.75°C.90°D.120°6.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°
B.55°
C.65°
D.75°7.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是(
)A.∠A
B.∠B
C.∠C
D.∠B或∠C8.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠CB.∠BDE=∠CDEC.AB=ACD.BD=CD9.如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的有()A.∠BAD=∠CAEB.△ABD≌△ACEC.AB=BCD.BD=CE10.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对11.某大学计划为新生配备如图①所示的折叠凳.图②是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度也为30cm,依据是()A.SAS B.ASA C.SSSD.AAS12.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°.下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④二 、填空题13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有14.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是.15.在△ABC中,∠A=60°,∠B=2∠C,则∠B=.16.已知△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°,如图所示,则∠BAC′的度数为.17.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为E,D,AD=25,DE=17,则BE=
.18.如图,旗杆AC与旗杆BD相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是s.三 、解答题19.小王准备用一段长30m的篱笆围成一个三角形形状的场地,用于饲养家兔,已知第一条边长为am,由于受地势限制,第二条边长只能是第一条边长的2倍多2m.(1)请用a表示第三条边长.(2)问第一条边长可以为7m吗?请说明理由.20.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.21.如图,已知AB=AC,∠DAC=∠EAB,∠B=∠C.求证:BD=CE.22.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.23.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.24.如图,在等腰Rt△ACB中,∠ACB是直角,AC=BC,把一个45°角的顶点放在C处,两边分别与AB交于E,F两点.(1)将所得△ACE以C为中心,按逆时针方向旋转到△BCG,试求证:△EFC≌△GFC;(2)若AB=10,AE∶BF=3∶4,求EF的长.25.(1)如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试探究AB,AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,证明你的结论.
参考答案1.B2.A3.B.4.B5.C6.D7.A.8.B.9.C10.C.11.A12.C.13.答案为:稳定性.14.答案为:3或4.15.答案为:80°.16.答案为:100°.17.答案为:8.18.答案为:3.19.解:(1)第三边为:30﹣a﹣(2a+2)=(28﹣3a)m.(2)第一条边长不可以为7m.理由:a=7时,三边分别为7,16,7,∵7+7<16,∴不能构成三角形,即第一条边长不可以为7m.18.解:(1)如图1所示:∠ADC=∠BDC=90°;(2)如图2所示:∠ACD=120°,∠BDC=150°.20.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=0.5∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.21.证明:∵∠DAC=∠EAB,∴∠DAC+∠BAC=∠EAB+∠BAC.∴∠EAC=∠DAB.在△EAC和△DAB中,,∴△DAB≌△EAC(ASA),∴BD=CE.22.证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.23.解:(1)河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED,即他们的做法是正确的.24.解:(1)由旋转知:△BCG≌△ACE.∴CG=CE,∠BCG=∠ACE.∵∠ACE+∠BCF=45°,∴∠BCG+∠BCF=45°,即∠GCF=∠ECF=45°,而CF为公共边,∴△EFC≌△GFC(SAS);(2)连接FG.由△BCG≌△ACE知:∠CBG=∠A=45°,∴∠GBF=∠CBG+∠CBF=90°,由△EFC≌△GFC知:EF=GF.设BG=AE=3x,BF=4x,则在Rt△GBF中,GF=5x,∴EF=GF=5x,∴AB=3x+5x+4x=10,∴AB=eq\f(5,6),∴EF=5x=eq\f(25,6).25.解:(1)证明:延长AE交DC的延长线于点F,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠F,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠BAE=∠EAD,∵AB∥CD,∴∠BAE=∠F,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 试用期销售合同范本(3篇)
- 心理疏导服务团队方案(3篇)
- 新教材高考地理二轮复习三10个长效热点综合专项训练热点3生物多样性与环境含答案
- 武汉市部分重点中学 2024-2025 学年度上学期期中联考 高二地理试卷
- 陕西省西安市曲江第一小学2024-2025学年四年级上学期期中学业水平测试科学试题(无答案)
- 2025年高考物理专项复习:机械波及光的运用(分层练)(解析版)
- 广告制作合同范本怎么写
- 2024年证券交易市场委托交易规则
- 绿色环保课程设计
- 农贸市场摊位租赁条款
- 《茶叶销售技巧》课件
- 专项施工方案(模板工程及支撑体系专项施工方案)
- 护士与医生的合作与沟通
- GB 42295-2022电动自行车电气安全要求
- 产品系统设计开发 课件 第4、5章 产品系统设计类型、产品系统设计开发综合案例
- 1编译原理及实现课后题及答案
- 让阅读成为习惯家长会课件
- 家庭健康照护服务方案
- 居民自建桩安装告知书回执
- 加气站有限空间管理制度
- 中国心血管病报告2023
评论
0/150
提交评论