版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
动态测量误差分离与修正技术一、动态测量动态测量的概念是在19世纪80年代提出的。随着科学技术和测量技术的进一步发展,动态测量技术也越来越受到了人们的重视。关于什么是动态测量,至今仍未有一个严格的科学定义。综合目前对动态测量的认识,主要有两种观点。一是:动态测量是对确定量的瞬时值及其随时间变化的量所进行的测量,这里动态测量指的是被测量为变量的连续测量过程。二是:认为测量装置在动态下使用的测量亦即为动态测量,动态是以测量装置输出变化信号为特征的。尽管对动态测量尚无统一定义,但在测量全过程中,测量系统必须处于运动状态,这种认识是一致的。若要对动态测量误差进行修正与评定,就要了解动态测量误差的特点,而动态测量误差又存在于动态测量过程之中,因此有必要知道动态测量的基本特点。主要包括:时变性,随机性,相关性和动态性。时变性:动态测量是以测量装置输出变化信号为特征的,因此动态测量数据总会随着时间t而变化。随机性:动态测量难免存在随机误差或干扰、噪声等,使动态测量数据具有随机性,即总表示为测量时间t的随机函数。况且,被测变量本身有时也表现为某种随机函数,如表面粗糙度即是。相关性:由于动态测量系统具有一定的动态响应特性,其输出值不仅与该时刻的输入值有关,且和该时刻以前的测量值有关。即动态测量的相邻瞬时值之间不是相互独立的,而是具有相关性。动态性:动态测量系统在测量过程中始终处在运动状态,需用微分方程、差分方程或状态方程来描述测量系统的输入输出关系,还常用传递函数、脉冲响应函数或频率响应函数等反映该测量系统的动态特性。在动态测量数据处理及其测量误差分析与评定中也常借助系统分析,即其动态特性的分析方法。二、动态测量误差由于外界干扰和内部结构的不稳定的存在,运动过程中的测量系统必然会产生误差。在理想情况下,被测量Y{t)与测量装置相互作用后,含有被测信息的信号x{t)进入动态测量装置,经过理想变换T0[・],输出测量信号yQ(t),再经理想变换D0[・]后,就能还原成被测量真值Y(t),即:Y(t)=D[T[x(t)]]00000但在实际的测量过程中,由于种种原因,一方面动态测量系统并不能达到理想的变换T0[・]和D°[・],而是T[•]和D[・],另一方面测量过程中难免存在外界扰动和噪声n(t),则实际的测量结果为:K(t)=D[T[x(t)]]延用传统误差的概念,动态测量误差的定义:在动态测量过程中,动态测量结果减去被测量的真值,即:NY=Y(t)-Y(t)0由此可见,动态测量误差是由于测量系统的静态和动态特性不理想和受外界干扰而产生的。由于被测量的确切数值一般是未知的,因此上述定义只有理论上的意义。在实际应用时,经常用误差对NY(t)可忽略的约定真值所替代。由于几乎组成测量系统的各个部分都会产生误差。因此动态测量系统所产生的动态测量误差必然具有动态性和时变性,同时进一步推理可知动态测量误差数列具有随机过程性和误差之间的相关性。由于上述特性存在,使得动态测量误差的修正与评定更为复杂。三、动态测量误差理论误差理论是测试技术、仪器仪表及工程实验等领域不可缺少的重要理论基础,它在科学与生产实践中起着重要的作用,因此受到普遍重视并得到迅速发展。随着现代化、自动化和高精度测试技术的不断出现,测试结果数据处理的理论与方法也向高水平发展,而误差理论则由经典时代发展到现代化新水平阶段,逐渐形成了现代误差理论。由于动态测量技术的广泛应用,动态测量误差理论已成为现代误差理论的重要组成部分之一,而且它也是动态测量研究的重要内容之一。近年来,随着光电、数字化、微处理、自动化等技术的广泛应用以及智能化测试、柔性测试、计算机辅助测试等技术的发展,各种动态测量数据处理方法层出不穷,使动态测量误差理论得到了相应的发展,取得了一定的成果:动态测量数据处理方法层出不穷:动态测量数据处理方法的研究一直受到各国学者的关注,提出了许多适用的方法。这些方法主要有谱分析、回归分析、时序分析、滤波分析、神经网络、小波变换、遗传算法等。动态测量误差分离与修正技术:由于计算机的普及,误差分离与修正技术得到了新的飞跃,不仅使理论得到了进一步的完善而且它不再停留在理论计算阶段。而是与计算机相结合,并应用在实际的生产线上,进行实时误差分离与修正。动态测量误差评定:动态测量误差评定一直是各国研究机构和学者研究的重点,现已提出了若干评定指标,如均值函数、方差函数、自相关函数或自协方差函数等。4)全系统动态精度理论概念的提出:它从全面分析系统内部各组成结构和外部十扰因素入手,使输入输出之间的“黑箱”即实际系统尽可能“白化”或“回化”,便于采用传递链函数来代替传统的传递函数方法来研究。动态测量误差理论的研究虽然取得了一些成果,但仍有许多问题没有解决,如动态误差建模实时预报修正问题。常见的时序分析、神经网络等方法在某些情况下的适应性较好,但在预报过程中,多步预报的精度会随着预报步数的增大而迅速降低,实时修正效果较差;虽然GUM阐述了测量不确定度的概念和评定方法,但它回避了动态测量的不确定度问题;还有动态测量系统不确定度与时间相关性研究,目前只有极少的学者对此开展了研究;这些问题都是当前迫切需要解决的关键问题,需要进一步研究。四、动态测量误差分离与修正技术误差分离与修正技术室提高动态测量精度的有效和经济的途径,由于动态测量系统的复杂性,增加了误差分离的难度,对特定的测量系统需选择和设计一个经济有效的分离方法,各种误差分离方法都有一定的针对性,其应用范围和实现方法也存在着局限性。国内外很多学者对误差分离技术进行了研究,提出了很多实用有效的方法,如多步法、反向法、多测头法、互比法、混合法和标准量对比法等。时序分析、神经网络、灰色理论和小波分析等现代数学方法成功应用在动态误差的建模和预报修正中。由于计算机的普及,误差分离与修正技术得到了新的飞跃,不仅使其理论得到了进一步的完善,而且,它不再停留在理论计算阶段,而是与计算机的快速计算、处理能力相结合,并应用在实际的生产线上,进行实时误差分离与修正。目前国内外的研究重点是复杂测量系统多因素误差修正和动态实时误差修正的理论与应用问题,并已取得了一定的成果。当动态测量系统在非标准工作条件下测量时,由于受各种干扰因素的作用,测量系统会产生较大的附加系统误差和随机误差,误差的变化规律在测量前是无法预知的,这种情况下可以采用离散标准量插入法实时分离动态测量系统误差与随机误差来提高测量精度。这种方法的测量原理可用图1表示,由图1可用看出输出信号中有一附加量3⑴,即为所要修正的误差。为了分离出所要修正的误差颂⑴,输出信号y⑺可用表示成离散形式:*=%k+空式中,七为t=kTk时的采样值;T为采样间隔或采样步长。因此,针对要修正的动态测量误差,按采样定理,选择合适的采用步长T,对输出信号进行采样,并设法在测量过程中插入相应已知的y值与输出信号的采样值y0,kk进行对比,则可分离出离散化的动态测量误差Ayk,然后用信号重构技术,恢复测量误差信号Ay(t),并对测量误差进行修正。误差分离与修正技术能够以低成本有效提高测试系统及仪器的精度,目前得到普遍应用,并成为测试仪器的重要组成部分。动态误差分离与修正难度大、代价高,因此研究低成本、高精度且行之有效的动态实时误差分离与修正技术,是提高仪器动态50年代以前,误差修正技术在计量测试和仪器制造中已开始应用。但在后来几十年内的发展一直很缓慢。直到70年代末以来,由于计算机的广泛应用,使误差修正得以快速发展。总的来说,误差修正经历了两个阶段:机械修正阶段和计算机修正阶段。机械修正方法修正误差项数少,范围小,精度不高,且限于系统误差和静态误差。随着计算机在测量仪器上的应用,误差修正技术逐渐发展到高水平现代化阶段,采用微机软件系统来修正误差。其特点是项数多,范围大,精度高,并可同时进行包括系统误差和随机误差的全面误差修正和动态误差修正。下面对动态测量误差分离的典型方法作简要介绍:多测头法是利用被分离的误差在不同位置具有确定性变化规律的特点,选择适当几个位置安放几个传感器测头,根据各个传感器同时获得的测量信号,经数据处理后,即可将误差分离出来。如用三测头法分离主轴回转误差。互比法是利用被测件与测量系统中的某部件具有相同性质的特点,通过相互比对和数据处理的方法,分离出测量系统中该部件产生的误差。如用互比法分离圆光栅误差。混合法实际上是多测头法的变形。它是利用几个不同的测头,分别接收不同的信号,再经数据处理分离出误差。如用混合法分离圆度误差和主轴回转误差。对比法基本原理是用高一级精度的标准量或仪器对被修正的量进行比对测量,从而分离出相应的误差值。如用双频激光干涉仪测量导轨的直线度误差。标准量插入法的基本思想是:在测量过程中插入若干个标准量或标准信号,为动态测量提供标准比对点,并实时地与测量系统的输出进行比对,求出动态测量在标准点的系统误差与随机误差综合值,再根据信号处理技术,求出动态测量系统误差和随机误差的变化规律,对动态测量误差进行实时修正。如用标准量插入法分离动态测角仪的测角误差。误差修正主要包括系统误差修正和随机误差修正。在系统误差修正的过程中,利用数字采样技术所获得的测量结果和测量误差都是离散值。为了能够在整个量程范围内对被测量结果的值进行修正,必须根据离散采样获得的有限误差值建立误差修正数学模型,即拟合为一定的误差曲线,以满足对任意测量值进行误差修正。常用的误差拟合方法主要包括插值法和最小二乘拟合法。其中插值法又分为线性插值法、分段多项式插值法和样条插值法。线性插值法是最简单的一种插值方法,是用已知测得的误差点为拟合直线的端点,相邻两误差点拟合成一条误差直线,由此形成数条端点相连的误差直线。对Yki和七两点之间的任意位置进行线性内插,即:Ay(t)=NY+△匕—△匕-1Y(t)(k-1<t<k)。IY-Yi分段多项式插值法是取测量值左右若干点,(常取总点数不大于6个,以避免发生“振荡”),拟合成一个代数多项式,再用内插的方法求出要修正的误差值。其中常用拉格朗日插值多项式:AY(t)=SFI"')—Y+jAY(k-1<t<k)『『Y广Y+7帝Lj归」样条插值法是用已知误差点为节点,相邻两节点间用多项式拟合,在每个节点处的拟合曲线连续光滑,整个拟合曲线为由分段多项式组成的连续函数,并准确地通过每个节点。用的样条插值法为三次样条拟合。对随机误差的修正,常用的有两种方法:多样本总体平均法和单样本建模法。多样本总体平均法常用于可重复性的测量,它的基本原理是:根据多次重复测量,得到测量结果的多个样本值或样本函数,然后通过加权平均法,在总体上减少随机误差。五、动态测量误差的希尔伯特-黄分解近年来,许多学者对动态测量误差的分解与溯源进行了深入研究,提出了熵分解、神经网络、傅里叶变换和小波变换等方法。但是,采用熵评价和分解误差时,无法具体分解出每一项误差;神经网络方法在已经动态误差信号频率组成的前提下,可以分解信号的周期成分,但在应用时会因网络设计不当、初始值选取等问题而使分解结果陷入局部最小值,难以控制;傅里叶变换适合于分解平稳信号,无法分解非平稳的动态测量误差信号;小波变换在非平稳信号分解方面具有较大优势,但是,选用不同的基函数会导致不同的分解结果,小波基的选取问题成为小波变换应用的瓶颈。希尔伯特-黄变换(HHT)是近年发展起来的一种新的时频分析方法,该方法不用选取基函数,可以自适应地分析非线性、非平稳信号。希尔伯特-黄变换多分辨分析法分解动态测量误差分两个步骤进行:首先利用经验模式分解(EMD)方法将给定的信号分解为若干本征模态函数(IMF),这些IMF是满足一定条件的分量;然后,再利用希尔伯特(Hilbert)变换和瞬时频率方法获得信号的时频谱。经验模态分解方法是HHT的核心部分,也就是通过将信号分解表示成许多单分量信号之和。在EMD分解过程中,强调本征模态函数需要满足如下两个条件:在整个数据序列中,极值点的数量与过零点的数量必须相等或最多只相差1个;在任一时刻,由极大值点定义的上包络线和由极小值点定义的下包络线的均值为零,也就是说信号的上下包络线对称于时间轴。满足以上条件的基本模式分量被称为本征模态函数(IMF)。通过EMD算法把复杂的动态测量误差f(t)分解成有限个本征模态函数,获得分解结果:f(t)=Uc(t)+r{t)i=1式中:c(t)为分解成的n个IMF分量,i=1,2,...,n;r\t)为分解后的残余分量。信号经分解得到IMF分量后,可以对每一个分量作希尔伯特变换,得到其瞬时频率和幅度。设对IMF分量c(t)进行Hilbert变换后得到~(t):iiC(t)=-PM^(di兀一8t-T式中:P为柯西主值,i=1,2,...,n。从而由c(t)和~(t)可以得到解析信号Z(t):iiiZ(t)=c(t)+jc(t)=a(t)e凡(t)iiii式中顼(t)为幅值函数,表示在每个采样点信号的瞬时能量幅值,。(t)fC2(t)+矣(t);TOC\o"1-5"\h\ziiii0(t)为相位函数,表示在每个采样点信号的瞬时相位,9(t)=arctan~M。幅值函数iiC(t)a(t)的时频分布定义为c(t)的Hilbert谱,对0(t)求导可得瞬时角频率①(t)=四义。iiiidt综合上述两步,动态测量误差信号可以表达为f(w,t)=Ua(t)ejM(t)dti=1f(3,t)的图像是一个时间-频率-能量三维分布图,可以准确地描述信号幅值在整个频率段上随时间和频率变化的规律。全系统动态精度理论建模方法是在充分考虑了动态测量系统内部结构参数所确定的系统单元和总体传输关系的基础上,从全面误差分析入手,以传递链函数的形式建立全系统动态测量误差模型。该方法能够反映系统内外各环节的特性变化对输出总误差的影响,可为改进仪器设计,保证测量精度提供重要依据。图1混联式动态测量系统结构仿真一混联式动态测量系统结构,如图1所示。根据全系统动态精度理论的建模原理,整个系统的传递链函数可表示为F(f,f,f)=f(f+f)123123式中:f=f(t)为各单元传递函数,i=1,2,3。ii假设系统各单元的误差为ei(t),i=1,2,3,测量系统的输出端还受到标准差为0.2的白噪声的干扰,则系统总误差“白化”模型为e=e(t)(f+f)+e(t)+e(t)+n(t)(1)y12323假设系统由二阶环节、线性环节和周期环节组成,各环节的传输特性及误差表达式如下:
f(t)=3e-3tsrn(10Kt+3兀/4)f{t)=t+4;f3(t)=sin(2兀t)e(t)=0.6t;e(t)=3sin(4兀t)e3(t)=sin(50Kt+兀/2)根据式(1)可得e(t)=0.6t2+2.4t+0.6tsin(2丸t)+3sin(4丸t)+sin(50Kt+丸/2)+n(t)(2)由式(2)可见,该系统输出的总误差主要由5个信号组成:趋势项s=0.6t2+2.4t,1线性调幅1Hz信号%=0.6tsii2(t),2Hz信号s3=3sii4"),25Hz信号ns=sin(50nt+—),白噪声n(t)。以100Hz的米样频率对仿真的总误差信号(2)在4'21(H)-20L.00~10s内进行采样,结果如图2所示1(H)-20L.0/W/W/Vv2468图2动态测量总误差仿真数据为了消除白噪声对信号分解结果的影响,先对原始仿真信号进行数字滤波处理,再对去噪后的信号采用镜像延拓技术进行希尔伯特-黄变换分解,分解得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冷冻海水产品购销协议
- 测量不确定度
- 八年级英语上册 Unit 9 Can you come to my party Section B(2a-2e)教案 (新版)人教新目标版
- 安徽省长丰县2024-2025学年高中政治 第四课 第二框 认识运动 把握规律教案 新人教版必修4
- 2024年春九年级化学下册 9 溶液 课题2 溶解度教案 (新版)新人教版
- 2024-2025学年高中数学上学期第10周 3.1.1方程的根与函数的零点教学设计
- 2023七年级英语下册 Unit 3 How do you get to school Section A 第1课时(1a-2e)教案 (新版)人教新目标版
- 2024-2025年新教材高中生物 第6章 第3节 细胞的衰老和死亡教案 新人教版必修1
- 预制房屋采购合同范本(2篇)
- 美味冰淇淋课件
- 2023广西玉林市北流市残疾人联合会招聘镇(街道)社区残疾人专职委员聘用前笔试历年典型考题及考点剖析附答案带详解
- 金融借款合同纠纷代理解决方案
- 大连辽宁大连理工大学会计核算中心自聘人员招聘笔试历年典型考题及考点附答案解析
- 厨房废油回收合同
- 浙教版(2023)五下信息科技第1课《身边的系统》教学设计
- GB/T 2039-2024金属材料单轴拉伸蠕变试验方法
- TD/T 1054-2018 土地整治术语(正式版)
- 新能源汽车消防安全培训
- 《特殊儿童个别化教育方案设计与指导的研究》课题报告
- 2024年西安陕鼓动力股份有限公司招聘笔试冲刺题(带答案解析)
- 继发性高血压知识讲解
评论
0/150
提交评论