客观分析-四维同化与伴随方法_第1页
客观分析-四维同化与伴随方法_第2页
客观分析-四维同化与伴随方法_第3页
客观分析-四维同化与伴随方法_第4页
客观分析-四维同化与伴随方法_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1

2000

2

Vol.1No.2

Apr.2000

4

JournalofPLAUniversityofScienceandTechnology

Ξ

(

,

211101)

,

;

;

P437

,

2

TowardtheObjectiveAnalysisFourDimensionalAssimilation

andAdjointMethod

WangXingbao

(DepartmentofAtmosphericScienceIM,PLAUST,Nanjing211101)

AbstractAtfirst,objectiveanalysisandfour2dimensionalassimilationarereviewedhistorically.Thenthe

applicationsofadjointmethodandvariationassimilationinmeteorologicalfieldsinrecentyearshavebeen

introduced.Theotherapplicationsofadjointmethodarealsodiscussed.

Keywordsobjectiveanalysis;four2dimensionalassimilation;adjointmethod

,

(Cressman1959),

(

),

,

,

,

,

,

,

,

,

,

,

,

,

;

,

,

,

,

,

,

,

,

,

(

Assimilation)

(

Nudging),

:1999210214

,1962

Ξ

:

,

,

,

.

68

1

,

,

(OI)

Gandin

1963

:

,

,

,

,

,

(

)

,

,

Cressman

,

,

OI

,

,

,

,

,

Morel

,

,

,

,

,

Rossby

,

,

,

,

,

,

,

,

,

,

,

,

,

,

1

1958

,

,

,

,

1969

Charney

,

,

(1970)

(

Smagorinsky

)

,

,

,

,

:

,

,

,

,

,

,

U(t,x)

,

,x

,t

Hilbert

,

2

8(

U(t,x)(t,x)

()

,

Utx

),

F88

:

1

69

F(U)=0

δ

dxdt

J(U)=

U-

U

2

δ

,U

8

,

F(U)=0

Lagrange

J(U)

,

F(U)=0

,

,

,

,

,

,

,

,

80

,

,

,

,

,

,

(

)

,

,

,

,

J(

),

,

,

J

,

(

)

J

,

(

,

,

)

,

,

Hoff2

man(1986)

,

,

,

,

,

,

(

)

2

(Adjoint)

50

,

70

,

Marchuk(1974)

,

SadokovShteinbok(1977InRussian)

80

80

,Cacuci

,

Hall

(1982)

80

V.V.PenenkoF.X.LeDimetOTalagrand

,

(

)

,

(

)

:

,

,

(

)

,

(

DescentStep)

,

,

70

1

2.1

,

Adjoint

Hibert

Cacuci(1981)

Hilbert

,

Adjoint

Hilbert

,

,

Hilbert

,

Hilbert

,

Euclidean

,

Hilbert

,

,

Hilbert

(1)

,g

Hilbert

,

(,),

vg(v)

,

F

F

F

:

g

v

v

g=(

,)

gv

(1)

v

,

g

g

v

F

v

g

v

i

v

55

(1)

,

gv

i

(2)

Hilbert

,

,,L

,

Hilbert

E

E

F

:

L3

F

E

(v,Lu)=

,

L3vu

(2)

u

E

,v

F

L3

L

E

F

,

,L

3

(

,

L3

)

L

L

L

(

)

uv=G(u),

g(v)=g[G(u)]

E

F

v

u

,g

(1)

,

Gu

v=

(3)

(4)

(3)

(1)

G3,

:

G

G

E

F

G

,∆

gu

v

)=

gGu

g=(

,

G

3

v

,

g

u

g

u

g=

G

3

g

u

v

(4)

,

g

v

u

u

(

uv=G(u)

),

g

u

,

g

u

u

v=G(u)

,

g

u

,

(4)

,

,

w,

G3w

,

g

g

g(v)

g

v

u

v

,

wG3w

G(u)

u

g

G

u

(u)

,

,

u

2.2

,u

,

uv=G(u)

,v

g(v)

,

[,]

tt

01

v

:

dxdt=F(x)

(5)

(6)

Hilbert

E,

,

x

F

E

E

u,(5)

x(t)

x(t0)=u

:

g

t1Hxttt

((),)d

g=

t0

:

1

71

[,],H[x,t]

tt

(

xE

t

t

x

t

0

1

),

(5)

x(t),

u

u

u

:

g

g

g=

t1

t0

H(t),∆x(t)

x

(7)

dt

H(t)H[x,t]

(x(t),t)

,∆x(t)

x(t)

x

u

x

x

(t)

x(t)

(

)

:

u

()

Ftx

d

xdt=

(8)

F(t)

x(t)

(8)

,

t,

F

x

,

t0

x(t)=

(,∆

Rtt)

u

0

(,)

0

,

(8)

,

R(t,t),

Rtt

t0

t

,

tt

[,],

tt

0

1

R(t,t)=

(9a)

(9b)

I

t

,

I

E

5

5tR(t,t)=F(t)R(t,t)

,

tt

(7)

t1

=

()

HtRtt

(

)∆u)

dt

g

,

,

x

0

t0

t1

=

=

R

3

(t,t)

H(t),)dt

(10)

u

0

x

t0

t1R3(t,t)

()d,)

Httu

x

0

t0

R(t,t0)

R3tt0

tt

(,),t[,].

0

1

(1),

(10)

g

u

g=

t1R3(t,t)

()

Htt

d

(11)

u

0

x

t0

(8)

-d∆

x

xdt=F3(t)

(12)

(12)

∆x

E

,F

(t)

(

)

3

,

tt,

∆x∆x,

Ft

S

(t,t)

,

∆x(t)=S(t,t)∆x(t)

,

d

x(t),∆x(t)

+

d

∆x(t),dx(t)

x(t),x(t)=

dt

dt

()(),x(t)-

dt

Ftxt

(t)x(t)=0

=

(),

xtF

3

,t

y

(8)

t

(,),

Rtty

y

y

y

E

t

(12)

S(t,t)y,

(,),

Rttyy

:

t

=

,(,)

yStty

,

S(t,t)R(t,t)

(11)

,

y

y

t

t

t

t

g=

t1Stt

(,)

()

Htt

d

(13)

(14)

u

0

x

t0

-d∆

xdt=

3

(t)x+

H(t)

x

F

72

1

)∆x(t)+

t1

(

,

St

x(t)=

(,

Stt

1

1

t

xt)=0

Σ

)

ΣΣ

H()d,

x

(

1

t1St

x(t)=

(13)

Σ

(,)

ΣΣ

H()d(15)

x

t

g=∆()

xt0

u

u,

g

u

:

(1)

,

t0

u

(5)

t1,

x(t)

t0

tt1

(2)

∆x(t1)=0

,

t1

t0

(14),

(t)

H(t)

F

3

x

(5)

x(t)

∆x(t0)

g

u

(3)

g,

,

u

g

11984

4

26

00

(GMT)

500hPa

(

)

umin

Fig.1The500hPaheightfieldofNorthernHemisphereat00GMTApril

261984(withoutvariationalassimilation)

Θ

D

n

=

-

(16)

u

u

n+1

n

n

u

,

nD

(),

gu

n

g

n

u

(u),

,

n

n-1

Θ,

n

u

umin

n

,

,

,

(

)

,

,

CPU

,

,

,

,

,

21984

4

26

00

(GMT)

500hPa

(

)

Fig.2The500hPaheightfieldofNorthernHemisphereat00GMTApril

261984(withvariationalassimilation)

,

,

Spinup

:

1

73

(

);

,

,

;

,

,

,

2.3

Courtier

1

Talagrand

,

1984

4

26

00

GMT

500hPa

,

2

24

500hPa

,

3,

3

500hPa

Fig.3Thedifferencebetween500hPaheightfieldswithandwithoutvari2

,

1

2

ationalassimilation.

,

24

,

2

,

3

,

,

,

,

,

,

(

)

,

,

,

10

,

,

,

Doppler

,

,

,

,

,

,

,

,

,

,

,

,

,

(Derber

1989)

,

,

74

1

,

(Optimalpertur2

bation),

Lorenz

,

Farrell,Lacarra

Talagrand

,

Optimalperturbation

MonteCarlo

,

,

(

Derber1989),

,

,

,

,

,

,

,

PC

1CacuciDG.Sensitivitytheoryfornonlinearsystems.J.Math.Phys.,1981,22:27942802

2CharneyJG,HalemM,JastrowR.Useofincompletehistoricaldatatoinferthepresentstateoftheatmosphere.J.Atmos.

Sci.,1969,26:11601163

3CourtierP,TalagrandO.Varitionalassimilationofmeteorologicalobservationswithadjointvorticityequation.Q.J.R.

Meteor.Soc,1987,113:13291347

4CourtierP,TalagrandO.Varitionalassimilationofmeteorlogicalobservationswiththedirectandadjointshallowwatere2

quations.Tellus,1990,42A:531549

5DerberJD.Variationfour2dimensionalanalysisusingquasi2geostrophicconstrains.Mon.Wea.Rev,1987,115:9981008

6DerberJD.Variationalcontinuousassimilationtechnique.Mon.Wea.Rev,1989,117:24372446

7DerberJD,RosatiA.Agobaloceanicdataassimilitionsystem.J.Phys.Oceanogr,1989,19:13331347

8HallMCG,CacuciDG,SchlesingerME.Sensitivityanalysisofaradiative2convectivemodelbytheadjointmethod.J.At2

mos.Sci,1982,39:20382050

9LacarraL,TalagrandO.Short2rangeevolutionofsmallperturbationsinabarotropicmodel.Tellus,1988,40A:8195

10LedimetFX,TalagrandO.Variationalalgorithmsforanalysisandassimilationofmeteorologicalobservations:theoretical

aspects.Tellus,1986,38A:97110

11LewisJM,DerberJC.Theuseofadjointequationstosolveavariationadjustmentproblemwithadvectiveconstraints.

Tellus,1985,37A:309322

12LewisJM,TuylVA,VeldenL.Adynamicalmethodforbuildingcontinuityintothedeep2layermeanwind.Mon.Wea.

Rev,1987,115:885893

13LorencAC.Analysismethodsfornumericalweatherprediction.Q.J.R.Meteor.Soc.,1986,112:11771194

14LorencAC.Optimalnonlineraobjectiveanalysis.Q.J.R.Meteor.Soc,1988,114:205240

15LorencAC.Apractivalapproximationtooptimalfourdimensionalobjectiveanalysis.Mon.Wea.Rev,1988,116:730745

16MarchukGJ.Numeri

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论