知识图谱 概念与技术 第13章:基于知识图谱的问答技术_第1页
知识图谱 概念与技术 第13章:基于知识图谱的问答技术_第2页
知识图谱 概念与技术 第13章:基于知识图谱的问答技术_第3页
知识图谱 概念与技术 第13章:基于知识图谱的问答技术_第4页
知识图谱 概念与技术 第13章:基于知识图谱的问答技术_第5页
已阅读5页,还剩118页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《知识图谱:概念与技术》的问答崔万云WanyunCuioIcomefrom•2013-2017PhD,FudanUniversity•AdvisedbyWeiWangandYanghuaXiaoIworkon•Questionanswering•2012.1–2012.11MicrosoftResearchAsiaAdvisedbyHaixunWang,IEEEfellow•2014.7–2014.11BaiduDeepQAproject(小度机器人)•Knowledgegraph33本章大纲总结44出的自然语言问题出的自然语言问题AppleSiri背景:相关产品weoneona应用场景康咨询WatsonImproveCancerCare.ksduringtheAppleWWDC2016.allanguagesearchforfilesonyourcomputer.的问答崔万云•为不同语义理解模型的整合提供了应用出口•为不同模型的关联分析、数据共享、参数共享等提出了实际需求•为多个自然语言语义理解技术模型的整体突破带来了技术愿景•降低了人机交互的门槛•提供了访问海量知识的新渠道QA的知识源问答社区搜索引擎百科知识图谱一个简单知识图谱•(d,population,390k)为什么KBQA?富知识表示•纯文本:文本句子的内部理解•知识图谱:关联性数据,提供文本理解的语义背景识准确率•纯文本:文本错误或者不同文本的知识矛盾•知识图谱:人工标注或解析自网页表格的高质量数据•纯文本:倒排表•知识图谱:存储于数据库,使用索引加速查询上的结构化查询ereonnum}Wheresubject=‘d’andpredicate=‘population’知识问答方法概述知识问答方法概述•通过人工构造规则模板将问题映射到属性•较高的准确率和较低的召回率(对问题多样性的较低覆盖率)•可解释性强知识问答方法概述•基于图做问题-答案的相似度计算和语义消岐•召回上升•可解释性尚可:来自图的合理性Naturallanguagequestionsforthewebofdata,知识问答方法概述•将离散的问题表示为连续向量•通过深度神经网络理解问题QuestionAnsweringoverFreebasewithMulti-ColumnConvolutionalNeuralNetwork,ACL2015QANet:CombiningLocalConvolutionwithGlobalSelf-AttentionforReadingComprehension,2018•较高的准确率和召回率•可解释性差:人类无法理解和预测神经网络知识问答方法概述•将文本作为补充知识源,解决数据稀疏性问题HybridQuestionAnsweringoverKnowledgeBaseandFreeText,COLING2016•更高的准确率和召回率•可解释性差•适用条件更严格:需要有配对文本知识问答方法概述:效果(准确&召回)的问答崔万云深度学习方法 Problemanalysis:intentclassificationuestioncandidatevalue•0thevalueisnottheanswer•1thevalueistheanswerAlgorithm:howtounderstandthequestions?g•wordembedding•SimilarsemanticshaveclosevectorsAlgorithm:howtounderstandthequestions?ing•Mergethewordembeddings•Notethesequentialfeature•CNN/RNNACL2015outstandingpaper的问答崔万云Multi-ColumnCNN:addmorefeaturespathontextrtypeQuestionAnsweringoverFreebasewithMulti-ColumnConvolutionalNeuralNetwork,ACL2015•Fullyutilizeallthefeatures.•Hierarchicalfeatureorganization.ns•Question•上海财经大学的校长是谁nowledgebases•Value•樊丽明•Entitydescription•教授•Predicate•现任校长的问答崔万云•3es•现任校长•Onehot:•现任校长•Wordlist:•现任校长•Charlist:•现任for1feature校长orcharlist的问答崔万云NeuralnetworkfordicateLSTMlayermbeddingermbeddingerLSTMlayermbeddingerMetaoutputNeuralnetworkfordicateLSTMlayermbeddingermbeddingerLSTMlayermbeddingerMetaoutput•3representationgranularity•Aggregation•现任校长•Onehot:•现任校长•Wordlist:•现任校长•Charlist:•现任校长现任校长现任校长现任校长的问答崔万云NeuralnetworkforteNeuralnetworkforQuestionLSTMlayerEmbeddinglayerEmbeddinglayer长现任校现任校长MetaoutputEmbeddinglayerLSTMlayer现任校长MGDNN:predicate-questionsimilarityNeuralnetworkforteNeuralnetworkforQuestionLSTMlayerEmbeddinglayerEmbeddinglayer长现任校现任校长MetaoutputEmbeddinglayerLSTMlayer现任校长OuOutputqCConcatenateOutputqOutputvConcatenateConcatenateNeuralnetworkforQuestionNeuralnetworkforValueNeuralnetworkforPredicateMetaoutputLSTMlayerEmbeddingerEmbeddinger现任校长现任校长答Embeddinger现任校长LSTMlayerOutputqOutputvConcatenateConcatenateNeuralnetworkforQuestionNeuralnetworkforValueNeuralnetworkforPredicateMetaoutputLSTMlayerEmbeddingerEmbeddinger现任校长现任校长答Embeddinger现任校长LSTMlayerOOutputqConcatenateConcatenateOOutputeConcatenateConcatenateNeuralNeuralnetworkforEntityDescriptionOutputqConcatenateNeuralnetworkforQuestionNeuralnetworkforPredicateMetaoutputLSTMlayerEmbeddingerEmbeddinger现任校长现任校长现任校长 答崔万云LSTMlayerEmbeddingerOutputvConcatenateNeuralnetworkforValueOutputeConcatenateNeuralnetworkforEntityOutputqConcatenateNeuralnetworkforQuestionNeuralnetworkforPredicateMetaoutputLSTMlayerEmbeddingerEmbeddinger现任校长现任校长现任校长 答崔万云LSTMlayerEmbeddingerOutputvConcatenateNeuralnetworkforValueOutputeConcatenateNeuralnetworkforEntityDescriptionOutputqConcatenateConcatenate的问答崔万云Ourscoreimproving)•KBQAbeatsallcompetitors.SEQ2SQL:agenerativemodel•HowmanypeopleliveinUSA?•Location:0.04•Population:0.85•President:0.02•…•Generativemodel•HowmanyCFLteamsarefromkCollege•SELECTCOUNTCFLTeamCollege=‘York’•SEQ2SEQ->SEQ2SQL•PROS:feasibletoSEQ2SQL:dataaugmentationbyRL•Input:aquestionandthecolumnsofthetable•Output:generatesthecorrespondingSQLoftheSQLagainstthedatabaseText:extrafeaturesforQAsityofKBQA•Incompletenessofknowledgegraphs•LackoflabeledtrainingdataobetteransweraquestiongetherwithKBQA•DoKBQA,textunderstandingsimultaneously•UsejointinferencetocomputethefinalanswerAAnswerreranking•FirstdoKBQA•Get(answer1,score1),…,(answern,scoren)•ThenreranktheanswersFeatures:scorei,textTogetherwithKBQA•••••Jointinferenceforheterogeneousfeatures.KBQA:generatescandidatewersandscoresbyKBQA.MC:providesanswersbyMCaseatures.Rerank:reranksanswersbyExperimentalResultsThisverifiestheeffectivenessofthereranking.如何构建更鲁棒的问答系统 odelsbeathumanAretheyrobustenoughs•ControllabilityAretheyrobustenough?ta•AdaptationPercyLiang’sQuestionArticleArticle:SuperBowl50(fromSQuADdataset)gbecamethefirstquarterbackevertoleadtwodifferentteamstomultipleSuperBowls.HeisalsotheoldestquarterbackevertoplayinaSuperBowlatage39.ThepastrecordwasheldbyJohnElway,wholedtheBroncostovictoryinSuperBowlXXXIIIatage38andisurrentlyDenversExecutiveVicePresidentofFootballOperationsandGeneralManager.erseynumberinChampBowlXXXIVQuestionWhatisthenameofthequarterbackwhowas38inSuperBowlXXXIII?”deradversaryJeffDeannJohnElwayEvaluatingReadingComprehensionSystemsRobinJiaetal.2017PercyLiang’sQuestionOriginalF1AdversarialF1BiDAF-EjNetlesF1:74.3->70.0IftestthismodelonprependedsentencesF1:70.0->ReadingComprehensionSystemsRobinJiaetal.2017Aretheyrobust?-NOAdaptationtonewdataLearning atvaluesandialsinquestionunderstanding•Theinputsentenceisawordsequence.•Theordersofthewordsaffecttheirsemantics.•recurrentneuralnetwork•Usesequentialmemoryfromtheformerunitincurmoreerrorsinspecificdomains.gdataforspecificromthesource•recurrentneuralnetwork•UsesequentialmemoryfromtheformerunitowledgeemoryintheHowtotransferknowledge?•Thetargetdomain’sparametersarewell-trained•No•Thetargetdomain’sparametersaretrainedinsufficiently.Yes•Thetargetdomain’slabelisthesameasthesourcedomain’s.•No->directlyusethesourcedomain’sprediction•Thetargetdomain’slabelisdifferentfromthesourcedomain’s.YesHowtotransferknowledge?•Thetargetdomain’sparametersaretrainedufficiently•Thetargetdomain’slabelisdifferentfromthesourcedomain’s.Howtotransferknowledge?10OpenSpecificdomaindomainHowtotransferknowledge?cercc00Open1Open1Opendomainknowledgetransferredthroughtherededge.siHowtotransfersequentialsi-TransferableRNNomainstothetargetdomain.SourceSourceDomainTargetDomainSiSiTixiSSi-1xxiorrespondingsequentialmemoryThesequentialmemoryiserredthroughtheblueedge.Theinputknowledgeisansferredthroughtherededge.ferableM•Allowthesequentialmemorytransferring•TransferableRNNframeworkndthesequentialmemoryis•Ifthesourcedomain’sparametersaretrainedsufficiently,usethesourcedomainmore-andviceversa.•Usegatestodecidetowhatextendtheknowledgeisretained.cTt+×+×hTi,tftitσcTt+×+×hTi,tftitσ×××itfit σσhTi,t-1byLearningQuestionAnsweringwithTemplatesandusworksed•Representsentencesbytemplates•Byhumanlabeling•PROs:•User-controllable•Applicabletoindustryuse•CONs:•Cannothandlethediversityofquestions.•Neuralnetworkbasedapproaches•Representsentencesbyembeddings•Bylearningfromcorpus•PROs:•Feasibletounderstanddiverse•CONs:•Poorinterpretability•Notcontrollable.Unfriendlytoindustrialapplication.Ourapproach•Representnaturallanguagequestionsbytemplates.•E.g.•Howmanypeoplearetherein$city?•Interpretable•User-controllab

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论