




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件中,是必然事件的是()A.如果a2=b2,那么a=bB.车辆随机到达一个路口,遇到红灯C.2021年有366天D.13个人中至少有两个人生肖相同2、下面是福州市几所中学的校标,其中是轴对称图形的是()A. B. C. D.3、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是()A.48°,72° B.72°,108°C.48°,72°或72°,108° D.80°,120°4、下列事件中,是必然事件的是()A.同位角相等B.打开电视,正在播出特别节目《战疫情》C.经过红绿灯路口,遇到绿灯D.长度为4,6,9的三条线段可以围成一个三角形.5、的值是().A. B. C. D.6、下列图形中,不是轴对称图形的是()A. B. C. D.7、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是()A. B. C. D.8、如图,已知AB=AD,CB=CD,可得△ABC≌△ADC,则判断的依据是()A.SSS B.SAS C.ASA D.HL9、一个不透明的袋子中有2个红球,3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是红球的概率为()······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······10、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是()A.3.5 B.4 C.5 D.5.5第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、已知a,b,c是的三条边长,化简的结果为_______.2、如图,将△ABC折叠,使点B落在AC边的中点D处,折痕为MN,若BC=3,AC=2,则△CDN的周长为___.3、若(x+2)(x+a)=x2+bx﹣8,则ab的值为_____.4、寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为__________.5、下列图形中,一定是轴对称图形的有______________(填序号).(1)线段;(2)三角形;(3)圆;(4)正方形;(5)梯形三、解答题(5小题,每小题10分,共计50分)1、(1)如图1,将一副直角三角尺的直角顶点C叠放在一起,经探究发现∠ACB与∠DCE的和不变.证明过程如下:由题可知∠BCE=∠ACD=90°∴∠ACB=+∠BCD.∴∠ACB=90°+∠BCD.∴∠ACB+∠DCE=90°+∠BCD+∠DCE=90°+∠BCE∵∠BCE=90°,∴∠ACB+∠DCE=.(2)如图2,若将两个含有60°的三角尺叠放在一起,使60°锐角的顶点A重合,则∠DAB与∠CAE有怎样的数量关系,并说明理由;(3)如图3,已知∠AOB=α,∠COD=β(α,β都是锐角),若把它们的顶点O重合在一起,请直接写出∠AOD与∠BOC的数量关系.2、阅读下面材料并填空.当分别取0,1,-1,2,-2,……时,求多项式的值.当时,______.当时,______.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······当时,______.当时,______.……以上的求解过程中,______和______都是变化的,是______的变化引起了______的变化.3、如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证:△ABD≌△CFD;(2)已知BC=9,AD=6,求AF的长.4、计算(1);(2).5、用无刻度的直尺作图,保留作图痕迹.(1)在图1中,BD是△ABC的角平分线,作△ABC的平分内角∠BCA的角平分线;(2)在图2中,AD是∠BAC的角平分线,作△ABC的∠BCA相邻的外角的角平分线.-参考答案-一、单选题1、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2=b2,那么,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D.【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.2、A······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······结合轴对称图形的概念进行求解即可.【详解】A、是轴对称图形,本选项符合题意;B、不是轴对称图形,本选项不合题意;C、不是轴对称图形,本选项不合题意;D、不是轴对称图形,本选项不合题意.故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、B【分析】根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.【详解】解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补,∵一个角的等于另一个角的,∴这两个角互补,设其中一个角为x,则另一个角为,根据题意可得:,解得:,,故选:B.【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.4、D【分析】根据必然事件的概念即可得出答案.【详解】解:∵同位角不一定相等,为随机事件,∴A选项不合题意,∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,∴B选项不合题意,∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,∴C选项不合题意,∵4+6>9,∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.∴D选项符合题意,故选:D.【点睛】本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.5、C【分析】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······【详解】解:故选:C【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法法则”是解本题的关键.6、A【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义逐一判断即可得到答案.【详解】解:选项A中的图形不是轴对称图形,故A符合题意;选项B中的图形是轴对称图形,故B不符合题意;选项C中的图形是轴对称图形,故C不符合题意;选项D中的图形是轴对称图形,故D不符合题意;故选A【点睛】本题考查的是轴对称图形的识别,掌握“轴对称图形的定义”是解本题的关键.7、A【分析】如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率利用概率公式直接计算即可得到答案.【详解】解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,骰子落地时朝上的数为偶数的可能性有种,而所有的等可能的结果数有种,所以骰子落地时朝上的数为偶数的概率是故选A【点睛】本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.8、A【分析】由利用边边边公理证明即可.【详解】解:故选A【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.9、D【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:根据题意可得:个不透明的袋子中有2个红球、3个黄球和4个蓝球,共9个,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······故选:D.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、D【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.【详解】∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.∵AB=3,∴AC=5,∴3≤AP≤5,故AP不可能是5.5,故选:D.【点睛】本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.二、填空题1、2b【分析】由题意根据三角形三边关系得到a+b-c>0,b-a-c<0,再去绝对值,合并同类项即可求解.【详解】解:∵a,b,c是的三条边长,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案为:2b.【点睛】本题考查的是三角形的三边关系以及去绝对值和整式加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.2、4【分析】由折叠可得NB=ND,由点D是AC的中点,可求出CD的长,将△CDN的周长转化为CD+BC即可.【详解】解:由折叠得,NB=ND,∵点D是AC的中点,∴CD=AD=AC=×2=1,∴△CDN的周长=CD+ND+NC=CD+NB+NC=CD+BC=1+3=4,故答案为:4.【点睛】本题考查了折叠的性质,将三角形的周长转化为CD+BC是解决问题的关键.3、······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······先计算等号左边,再根据等式求出a、b的值,最后代入求出ab的值.【详解】解:∵(x+2)(x+a)=x2+(2+a)x+2a,又∵(x+2)(x+a)=x2+bx﹣8,∴x2+(2+a)x+2a=x2+bx﹣8.∴2+a=b,2a=﹣8.∴a=﹣4,b=﹣2.∴ab=(﹣4)﹣2==.故答案为:.【点睛】本题考查了多项式乘多项式及负整数指数幂的计算,题目综合性较强,根据等式确定a、b的值是解决本题的关键.4、【分析】直接根据概率公式计算即可.【详解】解:抽中甲的可能性为,故答案为:.【点睛】本题考查了概率公式的简单应用,熟知:概率=所求情况数与总情况数之比是关键.5、(1)(3)(4)【分析】如果一个图形沿着一条直线对折后,直线两旁的部分完全重合,这样的图形叫做轴对称图形,依据定义即可作出判断.【详解】解:线段的对称轴是其垂直平分线,圆的对称轴是其直径所在的直线,正方形的对称轴是其对角线所在直线和对边中点的连线,(1)(3)(4)是轴对称图形,只有等腰三角形和等腰梯形是轴对称图形,(2)(5)不一定是轴对称图形,故一定是轴对称图形的有(1)(3)(4).故答案为:(1)(3)(4).【点睛】本题主要考查了轴对称图形的定义,解题的关键是正确确定轴对称图形的对称轴.三、解答题1、(1)∠ACD,180°;(2)∠DAB+∠CAE=120°,见解析;(3)∠AOD+∠BOC=β+α【分析】(1)结合图形把∠ACB与∠DCE的和转化为∠ACD与∠BCE的和;(2)结合图形把∠DAB与∠CAE的和转化为∠DAC与∠EAB的和;(3)结合图形把∠AOD与∠BOC的和转化为∠AOB与∠COD的和.【详解】······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴∠ACB=∠ACD+∠BCD,∴∠ACB=90°+∠BCD,∴∠ACB+∠DCE=90°+∠BCD+∠DCE=90°+∠BCE,∵∠BCE=90°,∴∠ACB+∠DCE=180°,故答案为:∠ACD,180°;(2)∠DAB+∠CAE=120°,理由:由题可知∠DAC=∠EAB=60°,∴∠DAB=∠DAC+∠CAB,∴∠DAB=60°+∠CAB,∴∠DAB+∠CAE=60°+∠CAB+∠CAE=60°+∠EAB,∵∠EAB=60°,∴∠DAB+∠CAE=120°;(3)∵∠AOB=α,∠COD=β,∴∠AOD=∠COD+∠AOC=β+∠AOC,∴∠AOD+∠BOC=β+∠AOC+∠BOC=β+∠AOB=β+α.【点睛】本题考查了余角和补角,根据题目的已知条件并结合图形找角与角之间的关系是解题的关键.2、,;,.【分析】分别将x的值代入各式子,即可求解.【详解】当分别取0,1,-1,2,-2,……时,求多项式的值.当时,.当时,.当时,.当时,.当时,.……以上的求解过程中,和都是变化的,是的变化引起了的变化【点睛】本题考查常量与变量、代数式的值等知识,是基础考点,难度较易,掌握相关知识是解题关键.3、(1)证明见解析;(2)AF=3【分析】(1)利用同角的余角相等,证明∠BAD=∠FCD,利用ASA证明即可;(2)利用全等三角形的性质,得BD=DF,结合BD=BC﹣CD,AF=AD﹣DF计算即可.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○·
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年庆祝妇女节活动方案
- 高三上学期诚实考试主题班会课件
- 2025年电子式热过载继电器项目可行性研究报告
- 2025年电化铝包装材料项目可行性研究报告
- 商丘师范学院《卫生微生物学》2023-2024学年第二学期期末试卷
- 上海民航职业技术学院《新媒体产品设计与项目管理》2023-2024学年第一学期期末试卷
- 洛阳文化旅游职业学院《中医体质学》2023-2024学年第二学期期末试卷
- 山东省济宁市济宁一中2025届高考生物试题模拟(三诊)试题含解析
- 湖南省新化县2025届初三下学期3月练习卷化学试题试卷含解析
- 湖北中医药大学《经济学原理》2023-2024学年第二学期期末试卷
- 湖南省2025届高三“一起考”大联考(模拟二)语文试题及参考答案
- 2024年中国职工保险互助会陕西办事处招聘笔试真题
- 公司事故隐患内部报告奖励制度
- 《严重创伤》课件
- 跨道施工保通方案(门洞式)
- 甲午中日战争-完整版课件
- 2022年陕西金融资产管理股份有限公司招聘笔试题库及答案解析
- LNG加气站质量管理手册
- 2021新《安全生产法》全面解读课件(PPT 84页)
- 乡镇干部民情恳谈制度
- 一般单位消防安全建设标准
评论
0/150
提交评论