北师大版七年级数学下册 3.认识三角形 教案_第1页
北师大版七年级数学下册 3.认识三角形 教案_第2页
北师大版七年级数学下册 3.认识三角形 教案_第3页
北师大版七年级数学下册 3.认识三角形 教案_第4页
北师大版七年级数学下册 3.认识三角形 教案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《.1认三角形》案一教目(一)知识目标.三角形的概念;.三角形的三边关.(二)能力目标.通观察、操作想象、推理、交流等活动,发展空间观念,推理能力和有条理地达能力..结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关.(三)情感目标联系学生的生活环境、创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴.二教重点.教学重点三角形三边关系的探究和归纳.教学难点三角形三边关系的应用三教过Ⅰ.创设现实情景,引入新课[师]看下列实物中,有你熟悉的图形吗?(出示投影:一些含有三角形的建筑物)立交桥、起重机、自行车、红领巾、空调外机的支架.[生]线段、角、三角形、圆.[师]好,在生活中随处可见含有几何图形的物体,线段、角已系统地介绍.圆将在以后的章节中介.从今天开始,我们来系统地研究第五章:三角.三角形,它简单、有趣,也十分有.可以帮助我们更好地认识周围的世界,也可以帮助我们解决很多的实际问题.在本章里,我们将学习三角形的基本性质,探索三角形全等的条件,并利用这些结果解决一些实际问.今天我们先来认识三角形.Ⅱ.讲授新课在小学数学中我们学习了有关三角形的一些初步知识,现在大家观察下面的屋顶框架图,

并回答以下问题:观察下面的屋顶框架.图-1

图5-(1你能从图-1中出不同的三角形吗?(2与同伴交流各自找的三角.(3这些三角形有什么共同特点?[师]要找三角形,必须知道什么是三角[师生共析]由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.三角形的基本要素:边、角、顶.三角形有三条边,三个内角和三个顶.[生]我能找到4个同的三角形[师]好与同伴交流一下……[师]能说清楚吗?可能同桌的两位或前后能指着说,隔一行或隔一排就恐怕不行,你说的是这个,他说的是那个,容易混淆,那怎么样就可以表示清楚呢?[生]用符号表.[师]对,这就需要用符号来表示三角形.“三形”可以用符号“eq\o\ac(△,”)eq\o\ac(△,)表,如图(1)顶点是A、B、的角形,记作eq\o\ac(△,“)eq\o\ac(△,)”作“三角形”∠A、、∠三角形的角,线段AB、BCCA是角形的.(1)(2)图5△ABC的三边,时也用、、c表.如图-3():顶点A所的边BC用a表示,边AC边AB分用bc来表示好下大家从图-31中找出6个不同的三角形,并用符号表示.[生甲]△ABDADF、△ADE、△AGE△、△.

[生乙]还可以、△、△.[师]很好,大家看看这些三角形有什么共同特点呢?[生丙]由三条线段组成.[生丁]不行,必须是由三条线段顺次首尾相接,否则如图5-4不是由线段、CD、EF组的三角.图5-4[生戊]这三条线段不能在同一直线上,否则构不成三角[师生共析]由此可知三角形的本质特点:(1不在同一直线上的三条线.(2这三条线段首尾顺次相.[师]好,下面我们来议一议.(1元宵节的晚上,房梁上亮起了彩灯,装有黄色彩灯的电线与装有红色的彩灯的电线哪根长呢?说明你的理.图5-5(2在一个三角形中,任意两边之和与第三边的长度有怎样的关系?为什么?[生甲]装有黄色彩灯的电线长,我是通过测量得到.[生乙]装有黄色彩灯的电线.因为我们在上册书中学习过这样一个性质:两点之间的所有连线中,线段最短.所以把装红色灯的电线两端当作两个点,这样它就最短.此,装有黄色彩灯的电线长[生丙]在一个三角形中,任意两边之和大于第三.如图-6图-6

△ABC中若、这个顶点看作是定点,由“两点之间的所有连线中,段最短”,可以得到:AB+AC>.同样,若把顶点、看作定点,可以得到:AB+BC>AC若把顶点A、B看定点,可以得到:BC+AC>AB因此可以得:三角形的任意两边的和大于第三.[师]同学们讨论得很好,尤其是第)个问题说得很透彻,由得到了三角形的三边之间的关系:三角形任意两边之和大于第三.注意:“任意”是没有任何条件的限.下面同学们来画一个锐角三角形,一个钝角三角形,一个直角三角.然后根据下列问题来做一做分别量出下面三个三角形的三边长度,并填入空格内:(1)()(3)图5-(1a,(2a,(3a,计算每个三角形的任意两边之差,并与第三边比较,你能得到什么结论?(学生画、量、计算)[生甲]这三个三角形的三边中,每两边的差都小于第三[生乙]通过计算,我们得到了:三角形任意两边之差小于第三.[师]很好这我们又得到了三角形的三边之间的关系:三角形任意两边之差小于第三.这个关系实际上可以由“三角形任意两边之和大于第三边”推导而.所以,任意三角形都满足:“任意两边之和大于第三边”,或者:“任意两边之差小于第三边”,二者相互制约

下面我们做练习来熟悉三角形的三边关.下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?实际摆一摆,验证你的结(1、、11(2、、7(3、cm、4cm[生甲](1)7+5=12>117+11=18>11+5=16>所以由cm、cm、11长三根小木棒能摆成三角.[生乙]老师,这样比较太麻烦,是不是可以只计算一组就行呢?[师]可以吗?[生丙]不可以.如(2:7+3=10>,但进行拼摆时,这三根小木棒在同一直线上,说明由4cm、3cm、7长三根小木棒不能构成三角.[生丁]我也觉得不行.如3):10+5=15>4,但过摆时,也发现这三根小木棒不能摆成三角形[生戊]我觉得可以,只需要求出两条较短的线段的和与最长的线段进行比较,如果满足“两线段的和大于第三条线段”,则这三条线段就能构成三角形,否则就不.[生子]也可以先求出两条较长线段的差,然后与最短的线段进行比.若于,则这三条线段就能构成三角形,若等于或大于,就不.[师]噢,大家讨论得很激烈,戊同学和子同学说得对吗?同学们来试一.[生]他们俩说得对[师]很好,这样给你三条线段,问能否组成三角形,就不必一一去验证了,只需要求出两条较短的线段的和与最长的线段进行比较,或求出两条较长的线段的差与最短的线段进行比较即.所以刚才的2:由于.出现了两之和等于第三边的情况,所以它们不能摆成三角.(3):由于<,出现了两边之和小于第三边的情况,所以它们不能摆成三角.好,下面我们来看例题:[例]有两根长度分别为5和的棒,用长度为的棒与它们能摆成三角形吗?为什么?长度为cm木棒呢?[师生共析]利用刚才讨论的方法去.解:取长度为的棒时,由于2+5=78,出现了两边之和小于第三边的况,所以它们不能摆成三角形取长度为的棒时,由于5+8=13,出了两边之和等于第三边的情况,所以它们也不能摆成三角形.

[师]大家想一想:你能取一根木棒,与原来的两根木棒摆成三角形吗?[生甲]能取根长木.[生乙]取cm、6cm、7cm、cm的木棒都可.[师]很好实上,若有两根长度分别为和的棒,那么第三根木棒的长度只需大于-cm,而小于8+5=13cm.即能摆成三角形.接下来我们做练习进一步巩固本节所学内Ⅲ:练习补充练习.指出图-8中几个三角形,并用符号表示出.图5-8图5-9答案:图中有12个三角形如图-9中上字母时,这12个角形分别为:△、△、△△BCE、△BCA、△DEF、△、△ABE、△、△、△CEF.如果线段、b、c可构成三角形,那么它们的长度的比有可能是()A∶3∶B2∶4C.2∶2∶.1∶∶3答案:AⅣ.课时小结本节课我们学习了三角形的概念及基本要素,重点研究了三角形的三边关.(1)三角形边关系的研究中可知三角形的三边相互制约—任两边之大于第三边,且任意两边之差小于第三.(2判断、bc三线段能否组成一个三形,应注意:+b,b+a,+>b.三个条件缺一不可.当a是a、c三线段中最长的一条时,只要b+>a,就有任意两条线段的和大于第三边

Ⅴ.课后作业Ⅵ.活动与探究.一个三角形的两边,c=7试确定第三边a的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论