微积分第四讲市公开课金奖市赛课一等奖课件_第1页
微积分第四讲市公开课金奖市赛课一等奖课件_第2页
微积分第四讲市公开课金奖市赛课一等奖课件_第3页
微积分第四讲市公开课金奖市赛课一等奖课件_第4页
微积分第四讲市公开课金奖市赛课一等奖课件_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

微积分

第四讲

马黎.5.6第1页第1页复习导数计算新授1.高阶导数和微分计算;2.导数应用。第2页第2页引例假如割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处切线.y=f(x)CTOYXMNx0xαφ第3页第3页切线MT斜率为:

第4页第4页导数几何意义第5页第5页第6页第6页基本导数公式第7页第7页导数计算法则第8页第8页作业一3.计算下列函数导数或微分:第9页第9页10分考题第10页第10页高阶导数第11页第11页第12页第12页微分第13页第13页第14页第14页第15页第15页第16页第16页作业一3.计算下列函数导数或微分:第17页第17页10分考题第18页第18页新授导数应用导数几何意义:第19页第19页

一、函数单调性与极值一)

函数单调性与极值第20页第20页这阐明,可导函数单调性与导数正负密切相关.反过来,能否利用导数符号判断函数单调性呢?第21页第21页第22页第22页第23页第23页考试3分题第24页第24页二、函数极值牛顿瞬时速度第25页第25页二、函数极值第26页第26页第27页第27页第28页第28页三、函数最值第29页第29页第30页第30页求连续函数在闭区间上最值普通环节:1.求驻点和不可导点.2.求驻点、不可导点以及区间端点处函数值,比较大小,即得最大值或最小值.第31页第31页第32页第32页第33页第33页四、经济分析中常见函数见书本P25页见书本P135页第34页第34页五、经济应用题(20分考题)(本题为作业四7.求解下列经济应用问题(1)小题)第35页第35页第36页第36页五、经济应用题(20分考题)(本题为作业四7.求解下列经济应用问题(2)小题)第37页第37页第38页第38页将数学引入经济学第一人

---保罗·萨缪尔森(PaulA.Samuelson)(1915-)保罗·萨缪尔森,1970年诺贝尔经济学奖取得者,是当代凯恩斯主义集大成者,经济学最后一个通才。他于16岁时进入芝加哥大学,之后在哈佛大学取得硕士和博士学位。25岁时成为麻省理工学院经济学助理专家,32岁时成为正专家,并始终在麻省理工学院任经济学专家。第39页第39页年12月13日去世。美国经济研究局主席在悼词中说道:他将数学分析办法引入经济学,帮助经济困境中上台肯尼迪政府制定了著名“肯尼迪减税方案”,并且写出了一部被数百万大学生奉为典型教科书《经济学》。假如经济学没有萨缪尔森,人们就会象在牛顿出现之前处理力学问题那样,茫然无措,艰苦无比。第40页第40页第41页第41页回顾萨缪尔森一生,可谓一经济结下了不解之缘,以经济第一次密切接触是1931年,世纪经济处于大萧条之中;最后一次与经济学见面是20,遭遇年经济危机世界经济复苏曙光初现,“生于危机,故于危机”,为经济而生萨缪尔森真正做到了善始善终。第42页第42页1932年,保罗·萨缪尔森考入芝加哥大学,专修经济学。此时经济学发展,就如萨缪尔森在1985年2月一次演讲时所说:“1932年我开始在芝加哥大学攻读经济学时,经济学还只是文字经济学。”萨缪尔森毕业后在哈佛大学继续攻读学业,在26岁那年取得博士学位。其博士学位论文《经济理论操作主要性》获哈佛大学威尔斯奖,以此为基础形成《经济分析基础》为萨缪尔森赢得了诺贝尔经济学奖。当初评奖委员会说:“在提升经济学家理论科学分析水平上,他(萨缪尔森)奉献要超出当代其它任何一位经济学家,他事实上以简朴语言重写了经济学理论相称部分。”第43页第43页1947年在其《经济分析基础》一书中提出比较静态经济分析办法,同年取得约翰·贝茨·克拉克奖。1948年出版《经济学》,它是美国第二本以凯恩斯学派为主经济学教科书,也是第一本成功推广凯恩斯学派教科书。它成为史上最畅销经济学教科书,现今是19版,曾译成40种语言,全球卖出靠近四百万本。他使麻省理工学院经济学系成为全美国经济学重镇。第44页第44页建言中国萨缪尔森于年11月撰文并在他去世后、在《中欧商业评论》发表,该文被一些评论者成为他“中国遗嘱”。文章称,到2050年,十几亿中国人将会创造全球最高年度总计实际国民生产净值。他提议:中国未来应当以奉行“适度中间路线”经济体作为自己发展目的。第45页第45页他指出,纯正资本主义不也许实现自我监管。它始终会造成不平等性加剧和宏观经济波动不稳定性。中间路线要求对市场和公司进行民主监管。即使理性监管永远无法做到完美,但它是一个优于其它目的。并且,他向美国读者指出,中国未来成功也许会受到美国爱国人士欢迎。经济绝对不是零和博弈。瑞士财富增多未必会以美国财富减少为代价。第46页第46页对数学结识1.数学起源于人类实践,但从实践中抽象出来以后,又有它相正确独立性和稳定性。2.推动数学发展动力,有实践及其它学科需要和工程技术需要,这种来自数学外部动力;尚有来自数学内部巨大动力,尤其是当它发展到一定程度以后,数学内部提出了大量主要问题,在相称大程度上吸引了数学家兴趣,他们通过对数学内部提出问题研究,发展和完善数学理论。

这样产生数学理论,往往离现实需要和实际应用相称遥远;有几十年,有几百年,有几千年才发觉它们应用。第47页第47页

3.理论数学不但“有用”,并且理论数学之“有用”,往往是重大“有用”;数学理论也许联系“实际”,有时会远远超出人们想象,甚至经常是数学理论出现时尚未出现“实际”。而理论数学这种“应用”,多次大大推动了世界科学技术发展。第48页第48页4.数学科学是各门自然科学和社会科学公共基础,数学应用领域不断扩大,数学不但是科学,也直接走到前台,成为技术,在第一线发挥主要作用,“高技术本质上是数学技术”

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论