括射频探测器行业市场需求与投资规划_第1页
括射频探测器行业市场需求与投资规划_第2页
括射频探测器行业市场需求与投资规划_第3页
括射频探测器行业市场需求与投资规划_第4页
括射频探测器行业市场需求与投资规划_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

括射频探测器行业市场需求与投资规划

超导材料发展理论超导材料的发展离不开理论的支撑,1933年,德国物理学家迈斯纳(W.Meissner)和奥林菲尔德(R.Ochsenfeld)共同发现了超导体的另一个重要特征完全抗磁性,即当材料处于超导状态时,将完全排斥磁场,超导体内的磁感应强度为零,人们将这种现象称为迈斯纳效应。因此,判断一种材料是否具备超导电性,必须要看其是否同时具备完全导电性和完全抗磁性。随后,巴丁(J.Bardeen)、库珀(L.V.Cooper)和施里弗(J.R.Schrieffer)在195K年提出了著名的BCS理论,它把超导现象看作一种宏观量子效应,成功地解释了金属或合金超导体的超导电性微观机理。由于电阻是由电子定向运动时与金属晶格发生碰撞而形成的,而在超导临界温度以下,超导体中的电子通过与晶格振动声子的交换来实现无损耗运动,即没有电阻产生,因此能够实现超导电性。至此,超导体的三大基本特性完全导电性、完全抗磁性和宏观量子效应均已奠定。宏观量子效应是超导电子学的基础,众多科学家及学者根据BCS理论作出了一系列的理论延伸:1)1962年,剑桥大学的约瑟夫森(B.Josephson)预言,电子对能够穿过薄绝缘层(量子隧穿),当由薄绝缘层隔开的两块超导体(约瑟夫森结结构)之间有电流通过时,其中并不会出现电压,这一现象被称为约瑟夫森效应。换言之,该现象是一种横跨约瑟夫森结的超电流现象,即超导电流可以在超导体一绝缘体一超导体的结构中产生;2)1968年,美国物理学家麦克米兰根据BCS理论得到超导体临界温度上限的公式,推算出超导体的临界温度一般不太可能超过39K(约-234℃),39K这个温度也被称为麦克米兰极限。该极限温度曾一度被主流学界所接受,直到1980年代高温超导体的蓬勃发展突破了这个理论极限。超导磁体行业发展概况磁共振成像技术(MagneticResoceImaging,简称MRI)是一种先进的人体无损成像技术,广泛应用于人体各个部位疾病的诊断。该系统的基本原理是在外磁场的作用下,某些绕主磁场(外磁场)进动的自旋质子(包括人体中的氢质子)在短暂的射频电波作用下,进动角增大。当射频电波停止后,质子又会逐渐恢复到原来的状态,并同时释放与激励波频率相同的射频信号。MRI便是利用这一原理,在主磁场中附加一个脉冲梯度磁场,选择性地激发所需位置的人体内原子核,然后接收原子核产生的核磁共振信号,最后在计算机中进行傅立叶变换,对这些信号进行频率编码和相位编码,从而建立一幅完整的磁共振图像。MRI设备主要有五大部分组成,即主磁体、梯度系统、射频系统、谱仪系统和计算机及其他辅助设备,其中主磁体、梯度系统、射频系统为MRI设备的核心硬件,覆盖MRI设备成本达90%以上。主磁体是设备的核心组成部分,提供强大静磁场,保持均匀的磁场强度。一般可分永磁体、常导磁体和超导磁体。永磁体和常导磁体的磁场强度较低,一般在0.5T及以下,且在能源消耗、重量、体积、稳定性和操控性等方面具有难以克服的缺陷。超导磁体通过低温超导原理产生高强磁场,在各方面性能均具有明显优势。梯度系统由梯度线圈、梯度放大器组成,谱仪系统的梯度脉冲发生器产生空间编码和定位所需的信号,经过梯度放大器放大信号,传输到梯度线圈上形成梯度磁场。射频系统主要包括射频发射线圈、射频探测器和射频放大器,射频发射线圈接收到射频放大器放大的脉冲信号,产生射频激励磁场,之后射频探测器采集成像体产生的磁共振信号再传输给谱仪系统。谱仪系统主要是由梯度脉冲发生器和射频脉冲发生器组成。计算机及其他辅助设备包括主控计算机、图像显示、检查床及射频屏蔽、磁屏蔽、UPS电源、冷却系统等,其作用是保证自检查开始到获得图像的过程能井然有序、精确无误地进行。区别于X射线和CT,核磁共振所获得的图像具有清晰、精细、分辨率高、对比度好、信息量大等特点,对软组织层次显示具有显著优势,而且不具有伤害性,在临床上的应用十分广泛。超导磁体行业的周期性区域性和季节性(一)超导磁体周期性医用影像类超导MRI设备属于医院检验科室的刚需。从存量角度,随着技术不断升级,原有设备仍有替代需求;从增量角度,大型高端医疗器械配置许可正在逐渐放量,政府指导文件和规划纲要强调优先使用国产产品,将会推动国产设备被医院采用;特种超导磁体的应用范围更为广泛,包括动物实验、物理研究、半导体产业、污水处理、石油化工等领域,潜在需求量巨大。综上,行业具备较好的行业景气度。(二)超导磁体区域性由于超导MRI设备单价较高,经济发达地区医院配置能力更为充沛,主要的生产厂商也集中在长三角、北京及深圳等地区,产业的集聚效应比较明显。(三)超导磁体季节性大型医用设备行业的终端客户群体一般为医疗机构,医疗机构购买大型医用设备的前置程序较为繁琐,通常在一季度进行预算审批,第二季度和第三季度进行招标和采购,四季度发货验收。因此,设备商及其上游的核心部件供应商的销售具备一定季节性特征。MCZ(磁控直拉单晶硅技术)单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)两种,直拉法是目前主要的单晶硅规模化量产技术。MCZ技术是通过磁场对导电硅流体的热对流形成抑制作用,抑制单晶硅生长过程中杂质和缺陷的产生,从而大幅改善晶体完整性、均匀性,可实现高质量大尺寸单晶硅快速生长。其中采用超导磁体提供5000Gs稳定磁场的MCZ技术是目前国际上生300mm以上大尺寸半导体级单晶硅的最主要方法。随着国内半导体工业的迅速发展,中国已成为全球增长速度最快的单晶硅生产和消费国家,其中MCZ产品占总产量的70%-80%,目前国际上300毫米以上大尺寸单晶硅片已成为主流。由于超导材料具有零电阻的特性,采用超导材料制备的超导磁体可以实现无阻载流运行,因此超导磁体和常导磁体相比,其体积和运行成本均大幅度减小,能够降低300mm单晶硅制造20%的能耗、提高30%的成品率。我国目前迫切需要发展满足300mmMCZ单晶硅制备用超导磁体制造技术并实现规模应用,以促进我国单晶硅行业的产业技术升级。从市场规模来看,我国单晶硅业市场规模由2017年的75.5亿元增长至2020年的380.3亿元,年均复合增长率为71.6%;从需求端来看,我国单晶硅片消费量由2017年的28.7GW增至2020年为144.4GW,年均复合增长率为71.56%。由此可见,在近年来半导体产业的驱动下,我国单晶硅市场规模和需求量在未来也将持续保持高速增长,MCZ技术需求市场也将一并扩大。同时,我国正在逐渐减少单晶硅进口依赖程度,单晶硅炉产量大幅上升,为单晶硅生产用MCZ磁体奠定了良好的市场基础,未来市场增量可期。超导体更高的临界温度按照超导体的临界温度,可以将超导体分为低温超导和高温超导材料:Tc<25K的超导材料称为C温超导材料,目前已实现商业化的包括NbTi(铌钛,Tc=9.5K)和Nb3Sn(铌三锡,Tc=18k)。由于NbTi和Nb3Sn具有优良的机械加工性能和成本优势,其制备技术与工艺已经相当成熟。目前低温超导的下游应用主要包括加速器磁体、核聚变工程用超导磁体、核磁共振磁体、通用超导磁体等,基于低温超导材料的应用装置一般工作在液氦温度(约4.2K)。在相当长的时期内,低温超导材料仍将是最主要的超导产业支柱性材料;Tc≥25K的超导材料为高温超导材料,具备实用价值的主要包括铋系(例如Bi-Sr-Ca-Cu-O,BSCCO,Tc=110K)、钇系(例如Y-Ba-Cu-O,YBCO,Tc=92K)和MgB2超导材料(Tc=39K)、铁基超导材料等。其中铋系和钇系高温超导材料于氧化物陶瓷,在制造工艺上须克服加工脆性、氧含量的精确控制及与基体反应等问题,因此生产成本较高,目前尚处于商业化初期阶段。目前高温超导的下游终端应用主要包括超导电缆、超导电机、超导变压器、超导滤器等,基于高温超导材料的应用装置一般工作在液氢温度(约20K)至液氮温度(约77K)之间。自超导现象被发现后的75年时间里,超导临界温度的提升进程十分缓慢,超导临界转变温度仅仅被提高到23.2K左右,且基本都由单元素金属和多元合金实现,这段时间内所发现的超导体均为低温超导体。直到人们对铜氧化物超导体和铁基超导体的科研进展实现实质性突破,高温超导体才得以开启高速发展的征程。1986年,瑞士科学家缪勒和柏诺兹在研究氧化物导电陶瓷材料LaBaCuO时发现其在30K以下具备超导迹象。随后,多国科学家争相对氧化物高温超导体进行研究,一举打破了氧化物陶瓷材料只能是绝缘体的传统观念,超导材料的Tc自1986年开始获得了大幅提升。铁基超导体研究的突破口则发生在2008年,日本东京工业大学的科学家细野秀雄教授的团队发现掺杂氟元素的LaFeAsO材料中存在26K临界温度的超导电性,这一发现掀起了铁基高温超导体的研究热潮。得益于经验的积累和稀土资源优势,中国科学家在得知消息的第一时间里认识到了该系统的重要性,并迅速合成了该类材料以开展物性研究。随后,中国团队采用稀土元素替代和高压合成方法获得了一系列的高质量超导体样品,并在常压下测量得到40K以上的超导电性,突破了麦克米兰极限,经优化合成方式之后获得了55K的高临界温度世界纪录,在国际上引起了极大的轰动,掀起了科学界对高温超导体的研究热潮。低温超导材料以铌基超导材料(NbTi和Nb3Sn)为主的低温超导材料具有优良的机械加工性能和超导电性,是目前最主要的实用化超导材料。低温超导产业链主要包括上游原材料、中游超导线材、超导磁体及下游超导设备四个环节:1)在原材料环节,低温超导线材对原材料(钛Ti、铌Nb、锡Sn)有很高的要求,且工艺过程复杂,技术条件严格,由于低温超导线材行业对原材料的消耗量并不大,因此上游原材料对超导线材行业的影响并不明显,超导线材行业的发展主要取决于技术进步;2)在超导线材(NbTi、Nb3Sn超导线)生产环节中,NbTi超导线的上游还包括NbTi棒材环节,由于Nb和Ti的熔点相差较大,且NbTi合金中Nb的含量较多,如果控制不好熔炼技术,易产生不熔块,导致后续细芯丝NbTi线在加工中断裂因此NbTi二元合金棒的制备非常困难,为重点技术加工环节;3)超导磁体是由超导线材绕制而成的能产生强磁场的超导线圈,并包括其运行所必要的低温恒温容器。基于超导材料的特性,超导磁体具有场强高、体积小、重量轻等特性。由于超导材料在超导状态下具有零电阻的特性,因此可以以极小的面积通过巨大的电流;4)下游行业主要为各类超导设备,随着磁共振成像仪(MRI)、磁控直拉单晶硅技术(MCZ)、核磁共振谱仪(NMR)、质子加速器、核聚变实验堆等领域的发展,未来低温超导线材的市场空间巨大。超导磁体行业发展历程1944年,美国科学家Rabi发明了研究气态原子核磁性的共振方法,从而获得当年的诺贝尔物理学奖,被誉为MRI的理论奠基人。在之后半个世纪的发展过程中,总共有5位(组)科学家因MRI的关键技术获得诺贝尔奖,逐渐推动理论与实践结合。1973年,纽约州立大学的RaymondDamadian教授用NMR设备得到第一幅原始的NMR像;1980年,Raymond制造出了第一台商业MRI扫描仪。四年后,美国FDA批准医用MRI设备用于临床。医用MRI设备市场在美国迅速发展,逐渐成为医学影像技术中不可或缺的重要诊疗手段,GPS等全球各大知名医疗器械企业布局该赛道。超导磁体行业发展趋势主磁体系统的信噪比与场强成正比,主磁体场强越高,信噪比越高,采集速度更快;梯度场强越高,作用时间越短,梯度切换率提升,成像速度也越快。图像质量和硬件的性能参数(如通道数上升、磁场均匀度提高等)及序列的配合设计有关。70cm级以上的大孔径设计能减少患者在检测时的幽闭恐惧和焦虑;射频探测器的舒适程度也会给患者带来更好的体验,例如GE企业的AIR线圈、企业的云线圈,打破固有传统线圈的重量和硬度限制,实现对患者检测部位的适应性覆盖,获得更佳信噪比,保证图像质量。2019年,Siemens发布新一代智慧型生命感知3TMRI系统,结合最新生物技术、智能传感器技术和计算机人工智能技术,在扫描的同时感知患者各种生理信息,实时传递给MRI系统,全自动一键化完成病变显示和图像分析处理,方便医生阅片和诊断。液氦作为超导MRI中重要的工业材料,为不可再生资源,而且在补充液氦的过程中会造成挥发和损耗。无液氦技术很好的解决了使用液氦降温这个问题,但对于大型超导MRI系统,利用制冷技术而非液氦制冷,是否能有效在全生命周期内控制成本,产品稳定性是否可靠,乃至商业化前景仍需要通过实践验证。高磁场强度的应用场景仍需进一步拓展,而且不同场景的产品设计存在差异,未来发展趋势和方向包括但不限于以下方面:A.质子回旋加速器:与传统放疗相比,质子放疗能实现肿瘤的定点爆破,具有更高精确度,同时免于对正常组织造成伤害,减少副作用和并发症,被认为是世界上最先进、更精准的前沿放射治疗技术。利用质子束对肿瘤进行精准放疗,具有剂量分布好、局部剂量高、旁散射少等优点。超导磁体即超导回旋加速器的核心部件。B.污水处理:利用磁絮凝沉淀工艺,可以将废水中微小悬浮物、胶体、细菌等不溶性污染物与微粒磁粉有效结合,形成更大体积和密度的磁性絮体,在强磁场下可以促使得废水中悬浮颗粒进行磁分离。理论上,处于临界温度以下的超导磁体所产生的磁场强度可以达到10T以上,可以在不添加磁种的情况下轻松实现磁分离。C.磁拉单晶:磁拉单晶技术的物理基础是通过磁场对导电硅流体的热对流形成抑制作用,抑制单晶硅生长过程中杂质和缺陷的产生,晶体完整性、均匀性得到极大改善,可实现高质量大尺寸单晶硅快速生长。采用超导磁体提供5,000Gs稳定磁场,是国际上生产300mm以上大尺寸半导体级单晶硅的最主要方法。D.电子废料处理:从电气和电子设备废料中回收金属可以解决环境和经济问题,在废PCB(印刷电路板)回收中使用超导磁吸分离,可有效提高铁、钴、镍等磁性金属的回收率。超导体的发展历史回顾超导体的发展历史,超导研究对象逐步由简单金属到合金

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论