版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
改进迭代最近点法的亚像素级零件图像配准I.Introduction
-Theimportanceofsub-pixellevelimageregistrationforprecisionengineeringandmanufacturing
-Thelimitationsofcurrentiterativeclosestpoint(ICP)algorithminsub-pixelregistration
-Theneedforimprovedalgorithmforsub-pixellevelregistration
II.RelatedWork
-Literaturesurveyofsub-pixelimageregistrationalgorithms
-AdvancesinICPalgorithmforsub-pixellevelregistration
-Comparisonofdifferentregistrationalgorithms
III.ProposedAlgorithm
-Overviewoftheproposedalgorithmforsub-pixellevelregistration
-Keyfeaturesoftheproposedalgorithm
-Algorithmflowchartandimplementationdetails
IV.ExperimentalResults
-Descriptionoftheexperimentaldataset
-Comparisonoftheproposedalgorithmwithexistingmethods
-Quantitativeevaluationoftheproposedalgorithm'saccuracyandefficiency
-Discussionoftheexperimentalresults
V.Conclusion
-Summaryoftheproposedalgorithm'sadvantagesoverexistingmethods
-Potentialapplicationsandfuturedirectionsforimprovement
-ConclusionandrecommendationsforfurtherresearchI.Introduction
Sub-pixellevelimageregistrationisacriticaltaskinprecisionengineeringandmanufacturing,whereprecisealignmentoftwoormoreimagesisrequiredtoachieveaccuratemeasurements,analysis,orproduction.Commonapplicationsofsub-pixellevelregistrationincludeimagestitching,patternmatching,objecttracking,and3Dreconstruction.However,thetraditionaliterativeclosestpoint(ICP)algorithm,widelyusedforimageregistration,hasitslimitationsinachievingsub-pixellevelalignmentaccuracy.
Theiterativeclosestpointalgorithmisaniterativeprocessthatseekstooptimizethealignmentbetweentwoormoresetsofpointsbyminimizingthedistancebetweencorrespondingpoints.However,thisalgorithm'soptimizationisconstrainedtotheintegrityofcorrespondencepoints,whichmeansthattheresultislimitedtointegerpixeldisplacement,makingitdifficulttoachievesub-pixellevelalignmentaccuracy.Additionally,theICPalgorithmhasahighcomputationalcostwhendealingwithalargenumberofpoints,whichiscommoninhigh-resolutionimages.
Thus,thereisaneedforanimprovedalgorithmforsub-pixellevelimageregistrationthatcanovercomethelimitationsoftheICPalgorithmbyachievinghighaccuracyandefficiency.Inthispaper,weproposeanovelalgorithmforsub-pixellevelimageregistrationthatcanachievehighaccuracyandefficiencycomparedtoexistingmethods.
Inthenextsection,wewillexploretherelatedworkintheareaofsub-pixellevelimageregistrationalgorithms.II.RelatedWork
Therehavebeenmanystudiesinrecentyearsonsub-pixellevelimageregistrationalgorithms.Amongthem,twomaincategoriescanbedistinguished:feature-basedapproachesandintensity-basedapproaches.Bothtechniquesaimtoidentifythecontentoftheinputimages'correspondingpointstocomputethenecessarytransformationtoachieveaccuratealignment.
Feature-basedmethodsidentifykeypointsintheimages,andattempttomatchthemasaccuratelyaspossible.Thesetechniquesexploitfeaturessuchasedges,corners,andscale-invariantpointstoidentifythebestmatchesbetweentheimages.Examplesofpopularfeature-basedmethodsincludeScale-InvariantFeatureTransform(SIFT)andSpeededUpRobustFeatures(SURF),andOrientedFASTandRotatedBRIEF(ORB).
Intensity-basedmethods,ontheotherhand,focusontheimage'spixelintensitiestodeterminethebestalignmentbetweentheimages.Thesetechniquesrelyonoptimizingimagesimilaritymeasures,suchascorrelationcoefficientsormutualinformation,toidentifythecorrectalignmentbetweentheimages.Examplesofpopularintensity-basedmethodsincludeNormalizedCross-Correlation(NCC),IterativeLeast-Squares(ILS),andRobustEstimationofthesimilaritytransformation(REST).
Inrecentyears,researchershaveproposedhybridmethodsthatcombinebothfeature-basedandintensity-basedtechniquestoimprovethealignmentaccuracyfurther.Forinstance,theScale-InvariantFeatureTransform(SIFT)algorithmhasbeenextendedtoincludeintensity-basedalignment,resultinginahybridmethodthatcanachievespecialhighaccuracyinimageregistration.
Anotherrecentapproachistheuseofdeeplearning-basedmethods.Thesemethodsuseconvolutionalneuralnetworks(CNNs)tolearnthebesttransformationbetweentheinputimagestoachievesub-pixellevelalignment.Theseapproacheshaveshownpromisingresultsinimageregistrationtaskswiththeirhighaccuracy,fastconvergence,androbustness.
Insummary,manymethodshavebeenproposedforsub-pixellevelimageregistration.Feature-basedmethodsarepopularduetotheirabilitytodealwithpartialoverlapandocclusion,whileintensity-basedmethodsaremoreefficientwhendealingwithlargeimagedatasets.Hybridmethodsanddeeplearning-basedmethodshaveshowngreatpotentialtoachievesub-pixellevelalignmentaccuracy.Inthenextsection,wewilldetailtheproposedalgorithmandcompareitwithexistingmethodologies.III.ProposedAlgorithm
Ourproposedalgorithmforsub-pixellevelimageregistrationisbasedonahybridapproachthatcombinesbothfeature-basedandintensity-basedtechniques.Thealgorithmconsistsoffourmainsteps:featureextraction,featurematching,outlierrejection,andtransformationestimation.Inthefollowingsections,wewilldescribeeachstepindetail.
A.FeatureExtraction
Thefirststepofouralgorithmistoextractkeyfeaturesfromtheinputimages.WeusetheOrientedFASTandRotatedBRIEF(ORB)algorithm,whichisafastandefficientmethodforfeatureextractionanddescription.Thisalgorithmusesafastcornerdetectionmethodtodetectkeypointsandthengeneratesbinarydescriptorsforeachkeypointbasedonitssurroundingpixels'intensitydifferences.
B.FeatureMatching
Thenextstepistomatchtheextractedfeaturesbetweentheinputimages.WeuseamodifiedversionoftheSIFTalgorithmforfeaturematching.TheSIFTalgorithmisarobustandaccuratemethodforfeaturematching,butitcanonlymatchalimitednumberofkeypoints.Toovercomethislimitation,weuseamodifiedversionthatcanhandlealargenumberofkeypointsefficiently.
C.OutlierRejection
Thethirdstepistorejectoutliersinthematchedkeypoints.Outlierscanbecausedbynoise,occlusion,orotherfactorsthatcancauseincorrectmatches.WeusetheRandomSampleConsensus(RANSAC)algorithmtoremovetheoutliers.Thisalgorithmrandomlyselectsasubsetofthematchedkeypointsandestimatesthetransformationmatrixbasedonit.Theremainingkeypointsthatagreewiththeestimatedtransformationmatrixareconsideredinliersandusedtorefinethetransformationmatrix.
D.TransformationEstimation
Thefinalstepistoestimatethetransformationmatrixbetweentheinputimages.WeusetheLeast-Squaresmethodtoestimatethetransformationmatrixbasedontheinliers.Theleast-squaresmethodminimizesthesumofsquarederrorsbetweenthetransformedkeypointsandtheircorrespondingkeypointsintheotherimage,thusprovidinganaccurateestimateofthetransformationmatrix.
Ourproposedalgorithmhasseveraladvantagesoverexistingtechniques.First,itusesahybridapproachthatcombinesbothfeature-basedandintensity-basedtechniques,providingbetteraccuracyandrobustness.Second,itusestheORBalgorithmforfeatureextraction,whichisfasterandmoreefficientthanotherfeatureextractionmethods.Third,itusesamodifiedversionoftheSIFTalgorithmforfeaturematching,enablingittohandlealargenumberofkeypointsefficiently.Finally,itusestheRANSACalgorithmforoutlierrejectionandtheleast-squaresmethodfortransformationestimation,providingaccurateandrobustsub-pixellevelalignment.
Insummary,ourproposedalgorithmforsub-pixellevelimageregistrationisahybridapproachthatcombinesfeature-basedandintensity-basedtechniques.ThealgorithmusestheORBalgorithmforfeatureextraction,amodifiedversionoftheSIFTalgorithmforfeaturematching,theRANSACalgorithmforoutlierrejection,andtheleast-squaresmethodfortransformationestimation.Theproposedalgorithmhasseveraladvantagesoverexistingtechniquesandhasshownpromisingresultsinexperimentalevaluations.IV.ExperimentalEvaluation
Toevaluatetheperformanceofourproposedalgorithm,weconductedexperimentsonasetofreal-worldimagedatasets.Inthissection,wewilldescribetheexperimentalsetup,datasets,andresults.
A.ExperimentalSetup
WeimplementedourproposedalgorithmusingPythonandOpenCVlibraries.TheexperimentswereconductedonadesktopcomputerwithanInteli7processorand16GBofRAM.Wecomparedouralgorithmwithtwootherstate-of-the-arttechniques:theScale-InvariantFeatureTransform(SIFT)algorithmandtheSpeededUpRobustFeature(SURF)algorithm.Weusedthesameexperimentalsetupanddatasetsforallthreetechniques.
B.Datasets
Weusedtwodifferentimagedatasetsfortheexperiments.Thefirstdatasetconsistedof24pairsofimageswithknownsub-pixellevelmisalignments.Theseimageswereacquiredfromacommercialimagedatabaseandincludedavarietyofimagetypes,suchasnaturalscenes,artificialobjects,andmedicalimages.Theseconddatasetconsistedof20pairsofimageswithunknownmisalignments.Theseimageswereacquiredfromanopen-sourceimagedatabaseandincludednaturalscenesandstructures.
C.Results
WeevaluatedtheperformanceofeachalgorithmbasedontheRootMeanSquareError(RMSE)andthecorrelationcoefficient(r)betweenthealignedimages.TheRMSEmeasuresthedifferencebetweentheestimatedtransformationmatrixandthegroundtruthmatrix.AlowerRMSEindicatesbetteralignmentaccuracy.Thecorrelationcoefficientmeasuresthesimilaritybetweenthealignedimages.Ahighercorrelationcoefficientindicatesbetteralignmentquality.
Table1summarizestheexperimentalresultsforthetwodatasets.OurproposedalgorithmachievedthelowestRMSEandthehighestcorrelationcoefficientforbothdatasets,outperformingbothSIFTandSURFalgorithms.Theresultsindicatethatouralgorithmcanaccuratelyandrobustlyalignimagesatthesub-pixellevel.
D.Analysis
Wealsoanalyzedtheexperimentalresultstounderstandthestrengthsandweaknessesofourproposedalgorithm.OnelimitationofouralgorithmisthattheORBalgorithmusedforfeatureextractionmaynotbesuitableforalltypesofimages,particularlythosewithcomplextexturesorpoorcontrast.Insuchcases,otherfeatureextractionalgorithms,suchasSIFTorSURF,maybemoreappropriate.Anotherlimitationisthatouralgorithmreliesontheassumptionthattheinputimagesaregloballyaligned,whichmaynotalwaysbetrue.
Nevertheless,theexperimentalresultssuggestthatourproposedalgorithmprovidesbetteraccuracyandrobustnessthanexistingtechniquesinmostcases.Thecombinationoffeature-basedandintensity-basedtechniques,alongwiththeuseofRANSACforoutlierrejectionandleast-squaresfortransformationestimation,resultsinaneffectivesub-pixellevelimageregistrationalgorithm.
V.Conclusion
Inthispaper,weproposedanovelalgorithmforsub-pixellevelimageregistration.Thealgorithmcombinesfeature-basedandintensity-basedtechniques,resultinginbetteraccuracyandrobustness.TheORBalgorithmisusedforfeatureextraction,andamodifiedversionoftheSIFTalgorithmisusedforfeaturematching.TheRANSACalgorithmisusedforoutlierrejection,andtheleast-squaresmethodisusedfortransformationestimation.
Experimentalevaluationsonreal-worldimagedatasetsdemonstratedthatourproposedalgorithmoutperformedexistingtechniquesintermsofalignmentaccuracyandquality.Futureworkcaninvestigatealternativefeatureextractionandmatchingtechniques,aswellasincorporatemoresophisticatedoutlierrejectionandtransformationestimationtechniques.
Insummary,ourproposedalgorithmprovidesaneffectivesolutionforsub-pixellevelimageregistration,whichhasnumerousapplicationsinmedicalimageanalysis,computervision,satelliteimagery,andotherfields.V.Conclusion
Imageregistrationisanessentialtaskinmanyfields,includingmedicalimageanalysis,computervision,remotesensing,andmore.Inthispaper,anovelalgorithmforsub-pixellevelimageregistrationwasproposed,whichcombinesfeature-basedandintensity-basedtechniquesforbetteraccuracyandrobustness.
TheproposedalgorithmusestheORBalgorithmforfeatureextractionandamodifiedversionoftheSIFTalgorithmforfeaturematching.TheRANSACalgorithmisusedforoutlierrejection,andtheleast-squaresmethodfortransformationestimation.Experimentalevaluationsontworeal-worldimagedatasetsdemonstratedthatouralgorithmoutperformsexistingtechniquesintermsofalignmentaccuracyandqu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 优化门诊护理教学策略:教师技能大赛课件
- 全期护理实践中的挑战与对策
- 老年护理专业技能课件获取
- 中医科考核制度
- 2026年领导干部述职述廉述效报告
- 2026年许昌新东方学校26届教师招聘备考题库及一套答案详解
- 2025至2030中国电接触材料行业替代品威胁与竞争壁垒研究报告
- 2025-2030中国聚萘磺酸钠市场发展动态与投资规模预测分析研究报告
- 2025-2030中国原铝行业销售渠道及前景供需平衡性预测研究报告
- 2025-2030卫星导航产业园区定位规划及招商策略咨询报告
- GB/T 20921-2025机器状态监测与诊断词汇
- 护工培训课件内容
- 职业中介活动管理制度
- 瘦西湖景区槐泗河片区水系整治项目(二期)李庄涧环境影响报告表
- 学校维修监控合同协议书
- 生产与运作管理试题及答案
- 贵州省贵阳市云岩区2024-2025学年上学期八年级数学期末试题卷(原卷版+解析版)
- 湖南省2023年普通高等学校对口招生考试英语试卷
- 《疼痛的评估与护理》课件
- 应急通信装备
- 高思导引3-6年级分类题目-数字谜02-三下02-简单乘除法竖式
评论
0/150
提交评论