版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
改进迭代最近点法的亚像素级零件图像配准I.Introduction
-Theimportanceofsub-pixellevelimageregistrationforprecisionengineeringandmanufacturing
-Thelimitationsofcurrentiterativeclosestpoint(ICP)algorithminsub-pixelregistration
-Theneedforimprovedalgorithmforsub-pixellevelregistration
II.RelatedWork
-Literaturesurveyofsub-pixelimageregistrationalgorithms
-AdvancesinICPalgorithmforsub-pixellevelregistration
-Comparisonofdifferentregistrationalgorithms
III.ProposedAlgorithm
-Overviewoftheproposedalgorithmforsub-pixellevelregistration
-Keyfeaturesoftheproposedalgorithm
-Algorithmflowchartandimplementationdetails
IV.ExperimentalResults
-Descriptionoftheexperimentaldataset
-Comparisonoftheproposedalgorithmwithexistingmethods
-Quantitativeevaluationoftheproposedalgorithm'saccuracyandefficiency
-Discussionoftheexperimentalresults
V.Conclusion
-Summaryoftheproposedalgorithm'sadvantagesoverexistingmethods
-Potentialapplicationsandfuturedirectionsforimprovement
-ConclusionandrecommendationsforfurtherresearchI.Introduction
Sub-pixellevelimageregistrationisacriticaltaskinprecisionengineeringandmanufacturing,whereprecisealignmentoftwoormoreimagesisrequiredtoachieveaccuratemeasurements,analysis,orproduction.Commonapplicationsofsub-pixellevelregistrationincludeimagestitching,patternmatching,objecttracking,and3Dreconstruction.However,thetraditionaliterativeclosestpoint(ICP)algorithm,widelyusedforimageregistration,hasitslimitationsinachievingsub-pixellevelalignmentaccuracy.
Theiterativeclosestpointalgorithmisaniterativeprocessthatseekstooptimizethealignmentbetweentwoormoresetsofpointsbyminimizingthedistancebetweencorrespondingpoints.However,thisalgorithm'soptimizationisconstrainedtotheintegrityofcorrespondencepoints,whichmeansthattheresultislimitedtointegerpixeldisplacement,makingitdifficulttoachievesub-pixellevelalignmentaccuracy.Additionally,theICPalgorithmhasahighcomputationalcostwhendealingwithalargenumberofpoints,whichiscommoninhigh-resolutionimages.
Thus,thereisaneedforanimprovedalgorithmforsub-pixellevelimageregistrationthatcanovercomethelimitationsoftheICPalgorithmbyachievinghighaccuracyandefficiency.Inthispaper,weproposeanovelalgorithmforsub-pixellevelimageregistrationthatcanachievehighaccuracyandefficiencycomparedtoexistingmethods.
Inthenextsection,wewillexploretherelatedworkintheareaofsub-pixellevelimageregistrationalgorithms.II.RelatedWork
Therehavebeenmanystudiesinrecentyearsonsub-pixellevelimageregistrationalgorithms.Amongthem,twomaincategoriescanbedistinguished:feature-basedapproachesandintensity-basedapproaches.Bothtechniquesaimtoidentifythecontentoftheinputimages'correspondingpointstocomputethenecessarytransformationtoachieveaccuratealignment.
Feature-basedmethodsidentifykeypointsintheimages,andattempttomatchthemasaccuratelyaspossible.Thesetechniquesexploitfeaturessuchasedges,corners,andscale-invariantpointstoidentifythebestmatchesbetweentheimages.Examplesofpopularfeature-basedmethodsincludeScale-InvariantFeatureTransform(SIFT)andSpeededUpRobustFeatures(SURF),andOrientedFASTandRotatedBRIEF(ORB).
Intensity-basedmethods,ontheotherhand,focusontheimage'spixelintensitiestodeterminethebestalignmentbetweentheimages.Thesetechniquesrelyonoptimizingimagesimilaritymeasures,suchascorrelationcoefficientsormutualinformation,toidentifythecorrectalignmentbetweentheimages.Examplesofpopularintensity-basedmethodsincludeNormalizedCross-Correlation(NCC),IterativeLeast-Squares(ILS),andRobustEstimationofthesimilaritytransformation(REST).
Inrecentyears,researchershaveproposedhybridmethodsthatcombinebothfeature-basedandintensity-basedtechniquestoimprovethealignmentaccuracyfurther.Forinstance,theScale-InvariantFeatureTransform(SIFT)algorithmhasbeenextendedtoincludeintensity-basedalignment,resultinginahybridmethodthatcanachievespecialhighaccuracyinimageregistration.
Anotherrecentapproachistheuseofdeeplearning-basedmethods.Thesemethodsuseconvolutionalneuralnetworks(CNNs)tolearnthebesttransformationbetweentheinputimagestoachievesub-pixellevelalignment.Theseapproacheshaveshownpromisingresultsinimageregistrationtaskswiththeirhighaccuracy,fastconvergence,androbustness.
Insummary,manymethodshavebeenproposedforsub-pixellevelimageregistration.Feature-basedmethodsarepopularduetotheirabilitytodealwithpartialoverlapandocclusion,whileintensity-basedmethodsaremoreefficientwhendealingwithlargeimagedatasets.Hybridmethodsanddeeplearning-basedmethodshaveshowngreatpotentialtoachievesub-pixellevelalignmentaccuracy.Inthenextsection,wewilldetailtheproposedalgorithmandcompareitwithexistingmethodologies.III.ProposedAlgorithm
Ourproposedalgorithmforsub-pixellevelimageregistrationisbasedonahybridapproachthatcombinesbothfeature-basedandintensity-basedtechniques.Thealgorithmconsistsoffourmainsteps:featureextraction,featurematching,outlierrejection,andtransformationestimation.Inthefollowingsections,wewilldescribeeachstepindetail.
A.FeatureExtraction
Thefirststepofouralgorithmistoextractkeyfeaturesfromtheinputimages.WeusetheOrientedFASTandRotatedBRIEF(ORB)algorithm,whichisafastandefficientmethodforfeatureextractionanddescription.Thisalgorithmusesafastcornerdetectionmethodtodetectkeypointsandthengeneratesbinarydescriptorsforeachkeypointbasedonitssurroundingpixels'intensitydifferences.
B.FeatureMatching
Thenextstepistomatchtheextractedfeaturesbetweentheinputimages.WeuseamodifiedversionoftheSIFTalgorithmforfeaturematching.TheSIFTalgorithmisarobustandaccuratemethodforfeaturematching,butitcanonlymatchalimitednumberofkeypoints.Toovercomethislimitation,weuseamodifiedversionthatcanhandlealargenumberofkeypointsefficiently.
C.OutlierRejection
Thethirdstepistorejectoutliersinthematchedkeypoints.Outlierscanbecausedbynoise,occlusion,orotherfactorsthatcancauseincorrectmatches.WeusetheRandomSampleConsensus(RANSAC)algorithmtoremovetheoutliers.Thisalgorithmrandomlyselectsasubsetofthematchedkeypointsandestimatesthetransformationmatrixbasedonit.Theremainingkeypointsthatagreewiththeestimatedtransformationmatrixareconsideredinliersandusedtorefinethetransformationmatrix.
D.TransformationEstimation
Thefinalstepistoestimatethetransformationmatrixbetweentheinputimages.WeusetheLeast-Squaresmethodtoestimatethetransformationmatrixbasedontheinliers.Theleast-squaresmethodminimizesthesumofsquarederrorsbetweenthetransformedkeypointsandtheircorrespondingkeypointsintheotherimage,thusprovidinganaccurateestimateofthetransformationmatrix.
Ourproposedalgorithmhasseveraladvantagesoverexistingtechniques.First,itusesahybridapproachthatcombinesbothfeature-basedandintensity-basedtechniques,providingbetteraccuracyandrobustness.Second,itusestheORBalgorithmforfeatureextraction,whichisfasterandmoreefficientthanotherfeatureextractionmethods.Third,itusesamodifiedversionoftheSIFTalgorithmforfeaturematching,enablingittohandlealargenumberofkeypointsefficiently.Finally,itusestheRANSACalgorithmforoutlierrejectionandtheleast-squaresmethodfortransformationestimation,providingaccurateandrobustsub-pixellevelalignment.
Insummary,ourproposedalgorithmforsub-pixellevelimageregistrationisahybridapproachthatcombinesfeature-basedandintensity-basedtechniques.ThealgorithmusestheORBalgorithmforfeatureextraction,amodifiedversionoftheSIFTalgorithmforfeaturematching,theRANSACalgorithmforoutlierrejection,andtheleast-squaresmethodfortransformationestimation.Theproposedalgorithmhasseveraladvantagesoverexistingtechniquesandhasshownpromisingresultsinexperimentalevaluations.IV.ExperimentalEvaluation
Toevaluatetheperformanceofourproposedalgorithm,weconductedexperimentsonasetofreal-worldimagedatasets.Inthissection,wewilldescribetheexperimentalsetup,datasets,andresults.
A.ExperimentalSetup
WeimplementedourproposedalgorithmusingPythonandOpenCVlibraries.TheexperimentswereconductedonadesktopcomputerwithanInteli7processorand16GBofRAM.Wecomparedouralgorithmwithtwootherstate-of-the-arttechniques:theScale-InvariantFeatureTransform(SIFT)algorithmandtheSpeededUpRobustFeature(SURF)algorithm.Weusedthesameexperimentalsetupanddatasetsforallthreetechniques.
B.Datasets
Weusedtwodifferentimagedatasetsfortheexperiments.Thefirstdatasetconsistedof24pairsofimageswithknownsub-pixellevelmisalignments.Theseimageswereacquiredfromacommercialimagedatabaseandincludedavarietyofimagetypes,suchasnaturalscenes,artificialobjects,andmedicalimages.Theseconddatasetconsistedof20pairsofimageswithunknownmisalignments.Theseimageswereacquiredfromanopen-sourceimagedatabaseandincludednaturalscenesandstructures.
C.Results
WeevaluatedtheperformanceofeachalgorithmbasedontheRootMeanSquareError(RMSE)andthecorrelationcoefficient(r)betweenthealignedimages.TheRMSEmeasuresthedifferencebetweentheestimatedtransformationmatrixandthegroundtruthmatrix.AlowerRMSEindicatesbetteralignmentaccuracy.Thecorrelationcoefficientmeasuresthesimilaritybetweenthealignedimages.Ahighercorrelationcoefficientindicatesbetteralignmentquality.
Table1summarizestheexperimentalresultsforthetwodatasets.OurproposedalgorithmachievedthelowestRMSEandthehighestcorrelationcoefficientforbothdatasets,outperformingbothSIFTandSURFalgorithms.Theresultsindicatethatouralgorithmcanaccuratelyandrobustlyalignimagesatthesub-pixellevel.
D.Analysis
Wealsoanalyzedtheexperimentalresultstounderstandthestrengthsandweaknessesofourproposedalgorithm.OnelimitationofouralgorithmisthattheORBalgorithmusedforfeatureextractionmaynotbesuitableforalltypesofimages,particularlythosewithcomplextexturesorpoorcontrast.Insuchcases,otherfeatureextractionalgorithms,suchasSIFTorSURF,maybemoreappropriate.Anotherlimitationisthatouralgorithmreliesontheassumptionthattheinputimagesaregloballyaligned,whichmaynotalwaysbetrue.
Nevertheless,theexperimentalresultssuggestthatourproposedalgorithmprovidesbetteraccuracyandrobustnessthanexistingtechniquesinmostcases.Thecombinationoffeature-basedandintensity-basedtechniques,alongwiththeuseofRANSACforoutlierrejectionandleast-squaresfortransformationestimation,resultsinaneffectivesub-pixellevelimageregistrationalgorithm.
V.Conclusion
Inthispaper,weproposedanovelalgorithmforsub-pixellevelimageregistration.Thealgorithmcombinesfeature-basedandintensity-basedtechniques,resultinginbetteraccuracyandrobustness.TheORBalgorithmisusedforfeatureextraction,andamodifiedversionoftheSIFTalgorithmisusedforfeaturematching.TheRANSACalgorithmisusedforoutlierrejection,andtheleast-squaresmethodisusedfortransformationestimation.
Experimentalevaluationsonreal-worldimagedatasetsdemonstratedthatourproposedalgorithmoutperformedexistingtechniquesintermsofalignmentaccuracyandquality.Futureworkcaninvestigatealternativefeatureextractionandmatchingtechniques,aswellasincorporatemoresophisticatedoutlierrejectionandtransformationestimationtechniques.
Insummary,ourproposedalgorithmprovidesaneffectivesolutionforsub-pixellevelimageregistration,whichhasnumerousapplicationsinmedicalimageanalysis,computervision,satelliteimagery,andotherfields.V.Conclusion
Imageregistrationisanessentialtaskinmanyfields,includingmedicalimageanalysis,computervision,remotesensing,andmore.Inthispaper,anovelalgorithmforsub-pixellevelimageregistrationwasproposed,whichcombinesfeature-basedandintensity-basedtechniquesforbetteraccuracyandrobustness.
TheproposedalgorithmusestheORBalgorithmforfeatureextractionandamodifiedversionoftheSIFTalgorithmforfeaturematching.TheRANSACalgorithmisusedforoutlierrejection,andtheleast-squaresmethodfortransformationestimation.Experimentalevaluationsontworeal-worldimagedatasetsdemonstratedthatouralgorithmoutperformsexistingtechniquesintermsofalignmentaccuracyandqu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学(飞行技术)飞行原理2026年综合测试题及答案
- 2026年篮球教练(篮球教学技能)综合测试题及答案
- 2026年综合测试(急救知识技能)考题及答案
- 高职第三学年(机械制造与自动化)生产线调试2026年综合测试题及答案
- 2026年水路运输知识(水路运输理论)考题及答案
- 深度解析(2026)《GBT 18213-2000低频电缆和电线无镀层和有镀层铜导体电阻计算导则》
- 深度解析(2026)《GBT 18084-2000植物检疫 地中海实蝇检疫鉴定方法》
- 深度解析(2026)《GBT 17980.82-2004农药 田间药效试验准则(二) 第82部分杀菌剂防治茶饼病》
- 深度解析(2026)《GBT 17904.2-1999ISDN用户-网络接口数据链路层技术规范及一致性测试方法 第2部分数据链路层协议一致性测试方法》
- 深度解析(2026)《GBT 17495-2009港口门座起重机》(2026年)深度解析
- 沼气回收合同范本
- 从库存积压到爆款频出:POP趋势网如何重塑女装设计师的工作逻辑1216
- 2025吐鲁番市高昌区招聘第二批警务辅助人员(165人)考试历年真题汇编带答案解析
- DRG支付改革下临床科室绩效优化策略
- 2026中央纪委国家监委机关直属单位招聘24人笔试备考题库含答案解析(夺冠)
- 平面包装设计创新创业
- 加盟2025年房地产经纪协议合同
- 2025至2030中国商业摄影行业市场发展分析及发展前景预测与投资风险报告
- 地球系统多源数据融合-洞察及研究
- 香水销售知识培训内容课件
- 工业产品早期可制造性评估标准
评论
0/150
提交评论