版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
改进迭代最近点法的亚像素级零件图像配准I.Introduction
-Theimportanceofsub-pixellevelimageregistrationforprecisionengineeringandmanufacturing
-Thelimitationsofcurrentiterativeclosestpoint(ICP)algorithminsub-pixelregistration
-Theneedforimprovedalgorithmforsub-pixellevelregistration
II.RelatedWork
-Literaturesurveyofsub-pixelimageregistrationalgorithms
-AdvancesinICPalgorithmforsub-pixellevelregistration
-Comparisonofdifferentregistrationalgorithms
III.ProposedAlgorithm
-Overviewoftheproposedalgorithmforsub-pixellevelregistration
-Keyfeaturesoftheproposedalgorithm
-Algorithmflowchartandimplementationdetails
IV.ExperimentalResults
-Descriptionoftheexperimentaldataset
-Comparisonoftheproposedalgorithmwithexistingmethods
-Quantitativeevaluationoftheproposedalgorithm'saccuracyandefficiency
-Discussionoftheexperimentalresults
V.Conclusion
-Summaryoftheproposedalgorithm'sadvantagesoverexistingmethods
-Potentialapplicationsandfuturedirectionsforimprovement
-ConclusionandrecommendationsforfurtherresearchI.Introduction
Sub-pixellevelimageregistrationisacriticaltaskinprecisionengineeringandmanufacturing,whereprecisealignmentoftwoormoreimagesisrequiredtoachieveaccuratemeasurements,analysis,orproduction.Commonapplicationsofsub-pixellevelregistrationincludeimagestitching,patternmatching,objecttracking,and3Dreconstruction.However,thetraditionaliterativeclosestpoint(ICP)algorithm,widelyusedforimageregistration,hasitslimitationsinachievingsub-pixellevelalignmentaccuracy.
Theiterativeclosestpointalgorithmisaniterativeprocessthatseekstooptimizethealignmentbetweentwoormoresetsofpointsbyminimizingthedistancebetweencorrespondingpoints.However,thisalgorithm'soptimizationisconstrainedtotheintegrityofcorrespondencepoints,whichmeansthattheresultislimitedtointegerpixeldisplacement,makingitdifficulttoachievesub-pixellevelalignmentaccuracy.Additionally,theICPalgorithmhasahighcomputationalcostwhendealingwithalargenumberofpoints,whichiscommoninhigh-resolutionimages.
Thus,thereisaneedforanimprovedalgorithmforsub-pixellevelimageregistrationthatcanovercomethelimitationsoftheICPalgorithmbyachievinghighaccuracyandefficiency.Inthispaper,weproposeanovelalgorithmforsub-pixellevelimageregistrationthatcanachievehighaccuracyandefficiencycomparedtoexistingmethods.
Inthenextsection,wewillexploretherelatedworkintheareaofsub-pixellevelimageregistrationalgorithms.II.RelatedWork
Therehavebeenmanystudiesinrecentyearsonsub-pixellevelimageregistrationalgorithms.Amongthem,twomaincategoriescanbedistinguished:feature-basedapproachesandintensity-basedapproaches.Bothtechniquesaimtoidentifythecontentoftheinputimages'correspondingpointstocomputethenecessarytransformationtoachieveaccuratealignment.
Feature-basedmethodsidentifykeypointsintheimages,andattempttomatchthemasaccuratelyaspossible.Thesetechniquesexploitfeaturessuchasedges,corners,andscale-invariantpointstoidentifythebestmatchesbetweentheimages.Examplesofpopularfeature-basedmethodsincludeScale-InvariantFeatureTransform(SIFT)andSpeededUpRobustFeatures(SURF),andOrientedFASTandRotatedBRIEF(ORB).
Intensity-basedmethods,ontheotherhand,focusontheimage'spixelintensitiestodeterminethebestalignmentbetweentheimages.Thesetechniquesrelyonoptimizingimagesimilaritymeasures,suchascorrelationcoefficientsormutualinformation,toidentifythecorrectalignmentbetweentheimages.Examplesofpopularintensity-basedmethodsincludeNormalizedCross-Correlation(NCC),IterativeLeast-Squares(ILS),andRobustEstimationofthesimilaritytransformation(REST).
Inrecentyears,researchershaveproposedhybridmethodsthatcombinebothfeature-basedandintensity-basedtechniquestoimprovethealignmentaccuracyfurther.Forinstance,theScale-InvariantFeatureTransform(SIFT)algorithmhasbeenextendedtoincludeintensity-basedalignment,resultinginahybridmethodthatcanachievespecialhighaccuracyinimageregistration.
Anotherrecentapproachistheuseofdeeplearning-basedmethods.Thesemethodsuseconvolutionalneuralnetworks(CNNs)tolearnthebesttransformationbetweentheinputimagestoachievesub-pixellevelalignment.Theseapproacheshaveshownpromisingresultsinimageregistrationtaskswiththeirhighaccuracy,fastconvergence,androbustness.
Insummary,manymethodshavebeenproposedforsub-pixellevelimageregistration.Feature-basedmethodsarepopularduetotheirabilitytodealwithpartialoverlapandocclusion,whileintensity-basedmethodsaremoreefficientwhendealingwithlargeimagedatasets.Hybridmethodsanddeeplearning-basedmethodshaveshowngreatpotentialtoachievesub-pixellevelalignmentaccuracy.Inthenextsection,wewilldetailtheproposedalgorithmandcompareitwithexistingmethodologies.III.ProposedAlgorithm
Ourproposedalgorithmforsub-pixellevelimageregistrationisbasedonahybridapproachthatcombinesbothfeature-basedandintensity-basedtechniques.Thealgorithmconsistsoffourmainsteps:featureextraction,featurematching,outlierrejection,andtransformationestimation.Inthefollowingsections,wewilldescribeeachstepindetail.
A.FeatureExtraction
Thefirststepofouralgorithmistoextractkeyfeaturesfromtheinputimages.WeusetheOrientedFASTandRotatedBRIEF(ORB)algorithm,whichisafastandefficientmethodforfeatureextractionanddescription.Thisalgorithmusesafastcornerdetectionmethodtodetectkeypointsandthengeneratesbinarydescriptorsforeachkeypointbasedonitssurroundingpixels'intensitydifferences.
B.FeatureMatching
Thenextstepistomatchtheextractedfeaturesbetweentheinputimages.WeuseamodifiedversionoftheSIFTalgorithmforfeaturematching.TheSIFTalgorithmisarobustandaccuratemethodforfeaturematching,butitcanonlymatchalimitednumberofkeypoints.Toovercomethislimitation,weuseamodifiedversionthatcanhandlealargenumberofkeypointsefficiently.
C.OutlierRejection
Thethirdstepistorejectoutliersinthematchedkeypoints.Outlierscanbecausedbynoise,occlusion,orotherfactorsthatcancauseincorrectmatches.WeusetheRandomSampleConsensus(RANSAC)algorithmtoremovetheoutliers.Thisalgorithmrandomlyselectsasubsetofthematchedkeypointsandestimatesthetransformationmatrixbasedonit.Theremainingkeypointsthatagreewiththeestimatedtransformationmatrixareconsideredinliersandusedtorefinethetransformationmatrix.
D.TransformationEstimation
Thefinalstepistoestimatethetransformationmatrixbetweentheinputimages.WeusetheLeast-Squaresmethodtoestimatethetransformationmatrixbasedontheinliers.Theleast-squaresmethodminimizesthesumofsquarederrorsbetweenthetransformedkeypointsandtheircorrespondingkeypointsintheotherimage,thusprovidinganaccurateestimateofthetransformationmatrix.
Ourproposedalgorithmhasseveraladvantagesoverexistingtechniques.First,itusesahybridapproachthatcombinesbothfeature-basedandintensity-basedtechniques,providingbetteraccuracyandrobustness.Second,itusestheORBalgorithmforfeatureextraction,whichisfasterandmoreefficientthanotherfeatureextractionmethods.Third,itusesamodifiedversionoftheSIFTalgorithmforfeaturematching,enablingittohandlealargenumberofkeypointsefficiently.Finally,itusestheRANSACalgorithmforoutlierrejectionandtheleast-squaresmethodfortransformationestimation,providingaccurateandrobustsub-pixellevelalignment.
Insummary,ourproposedalgorithmforsub-pixellevelimageregistrationisahybridapproachthatcombinesfeature-basedandintensity-basedtechniques.ThealgorithmusestheORBalgorithmforfeatureextraction,amodifiedversionoftheSIFTalgorithmforfeaturematching,theRANSACalgorithmforoutlierrejection,andtheleast-squaresmethodfortransformationestimation.Theproposedalgorithmhasseveraladvantagesoverexistingtechniquesandhasshownpromisingresultsinexperimentalevaluations.IV.ExperimentalEvaluation
Toevaluatetheperformanceofourproposedalgorithm,weconductedexperimentsonasetofreal-worldimagedatasets.Inthissection,wewilldescribetheexperimentalsetup,datasets,andresults.
A.ExperimentalSetup
WeimplementedourproposedalgorithmusingPythonandOpenCVlibraries.TheexperimentswereconductedonadesktopcomputerwithanInteli7processorand16GBofRAM.Wecomparedouralgorithmwithtwootherstate-of-the-arttechniques:theScale-InvariantFeatureTransform(SIFT)algorithmandtheSpeededUpRobustFeature(SURF)algorithm.Weusedthesameexperimentalsetupanddatasetsforallthreetechniques.
B.Datasets
Weusedtwodifferentimagedatasetsfortheexperiments.Thefirstdatasetconsistedof24pairsofimageswithknownsub-pixellevelmisalignments.Theseimageswereacquiredfromacommercialimagedatabaseandincludedavarietyofimagetypes,suchasnaturalscenes,artificialobjects,andmedicalimages.Theseconddatasetconsistedof20pairsofimageswithunknownmisalignments.Theseimageswereacquiredfromanopen-sourceimagedatabaseandincludednaturalscenesandstructures.
C.Results
WeevaluatedtheperformanceofeachalgorithmbasedontheRootMeanSquareError(RMSE)andthecorrelationcoefficient(r)betweenthealignedimages.TheRMSEmeasuresthedifferencebetweentheestimatedtransformationmatrixandthegroundtruthmatrix.AlowerRMSEindicatesbetteralignmentaccuracy.Thecorrelationcoefficientmeasuresthesimilaritybetweenthealignedimages.Ahighercorrelationcoefficientindicatesbetteralignmentquality.
Table1summarizestheexperimentalresultsforthetwodatasets.OurproposedalgorithmachievedthelowestRMSEandthehighestcorrelationcoefficientforbothdatasets,outperformingbothSIFTandSURFalgorithms.Theresultsindicatethatouralgorithmcanaccuratelyandrobustlyalignimagesatthesub-pixellevel.
D.Analysis
Wealsoanalyzedtheexperimentalresultstounderstandthestrengthsandweaknessesofourproposedalgorithm.OnelimitationofouralgorithmisthattheORBalgorithmusedforfeatureextractionmaynotbesuitableforalltypesofimages,particularlythosewithcomplextexturesorpoorcontrast.Insuchcases,otherfeatureextractionalgorithms,suchasSIFTorSURF,maybemoreappropriate.Anotherlimitationisthatouralgorithmreliesontheassumptionthattheinputimagesaregloballyaligned,whichmaynotalwaysbetrue.
Nevertheless,theexperimentalresultssuggestthatourproposedalgorithmprovidesbetteraccuracyandrobustnessthanexistingtechniquesinmostcases.Thecombinationoffeature-basedandintensity-basedtechniques,alongwiththeuseofRANSACforoutlierrejectionandleast-squaresfortransformationestimation,resultsinaneffectivesub-pixellevelimageregistrationalgorithm.
V.Conclusion
Inthispaper,weproposedanovelalgorithmforsub-pixellevelimageregistration.Thealgorithmcombinesfeature-basedandintensity-basedtechniques,resultinginbetteraccuracyandrobustness.TheORBalgorithmisusedforfeatureextraction,andamodifiedversionoftheSIFTalgorithmisusedforfeaturematching.TheRANSACalgorithmisusedforoutlierrejection,andtheleast-squaresmethodisusedfortransformationestimation.
Experimentalevaluationsonreal-worldimagedatasetsdemonstratedthatourproposedalgorithmoutperformedexistingtechniquesintermsofalignmentaccuracyandquality.Futureworkcaninvestigatealternativefeatureextractionandmatchingtechniques,aswellasincorporatemoresophisticatedoutlierrejectionandtransformationestimationtechniques.
Insummary,ourproposedalgorithmprovidesaneffectivesolutionforsub-pixellevelimageregistration,whichhasnumerousapplicationsinmedicalimageanalysis,computervision,satelliteimagery,andotherfields.V.Conclusion
Imageregistrationisanessentialtaskinmanyfields,includingmedicalimageanalysis,computervision,remotesensing,andmore.Inthispaper,anovelalgorithmforsub-pixellevelimageregistrationwasproposed,whichcombinesfeature-basedandintensity-basedtechniquesforbetteraccuracyandrobustness.
TheproposedalgorithmusestheORBalgorithmforfeatureextractionandamodifiedversionoftheSIFTalgorithmforfeaturematching.TheRANSACalgorithmisusedforoutlierrejection,andtheleast-squaresmethodfortransformationestimation.Experimentalevaluationsontworeal-worldimagedatasetsdemonstratedthatouralgorithmoutperformsexistingtechniquesintermsofalignmentaccuracyandqu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年体育春季开学第一课
- 二零二五年度房地产买卖合同范本(含土地、配套设施、税费及车位)3篇
- 国际山岳日介绍
- 二零二五年度房产交易平台二手房按揭合同范本2篇
- 实验室生物危害及生物安全安全培训课件
- 重庆市2024-2025学年高二上学期期末考试语文试卷(含答案)
- 公关部部门年终总结
- Unit 4 Never too old to learn Reading I 说课稿-2023-2024学年高中英语牛津译林版(2020)选择性必修第四册
- 江西省上饶市2024-2025学年度第一学期七年级道德与法治上册期末绿色评价试卷(含答案)
- 广东省深圳市龙岗区2024-2025学年高三上学期期末质量监测历史试题(含答案)
- 2025版健康体检中心代理运营合同协议3篇
- (已压缩)矿产资源储量技术标准解读300问-1-90
- 《户用光伏发电系统技术导则》
- (2024)江西省公务员考试《行测》真题卷及答案解析
- 采购部门总结及规划
- 期末综合试卷(含答案)2024-2025学年苏教版数学四年级上册
- 银行信息安全保密培训
- 《中华人民共和国药品管理法实施条例》
- 2024-2025学年人教版道法八年级上册 第一学期期末测试卷01
- GB/T 8574-2024复合肥料中钾含量的测定
- 工程结算业务咨询服务协议书
评论
0/150
提交评论