




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
改进迭代最近点法的亚像素级零件图像配准I.Introduction
-Theimportanceofsub-pixellevelimageregistrationforprecisionengineeringandmanufacturing
-Thelimitationsofcurrentiterativeclosestpoint(ICP)algorithminsub-pixelregistration
-Theneedforimprovedalgorithmforsub-pixellevelregistration
II.RelatedWork
-Literaturesurveyofsub-pixelimageregistrationalgorithms
-AdvancesinICPalgorithmforsub-pixellevelregistration
-Comparisonofdifferentregistrationalgorithms
III.ProposedAlgorithm
-Overviewoftheproposedalgorithmforsub-pixellevelregistration
-Keyfeaturesoftheproposedalgorithm
-Algorithmflowchartandimplementationdetails
IV.ExperimentalResults
-Descriptionoftheexperimentaldataset
-Comparisonoftheproposedalgorithmwithexistingmethods
-Quantitativeevaluationoftheproposedalgorithm'saccuracyandefficiency
-Discussionoftheexperimentalresults
V.Conclusion
-Summaryoftheproposedalgorithm'sadvantagesoverexistingmethods
-Potentialapplicationsandfuturedirectionsforimprovement
-ConclusionandrecommendationsforfurtherresearchI.Introduction
Sub-pixellevelimageregistrationisacriticaltaskinprecisionengineeringandmanufacturing,whereprecisealignmentoftwoormoreimagesisrequiredtoachieveaccuratemeasurements,analysis,orproduction.Commonapplicationsofsub-pixellevelregistrationincludeimagestitching,patternmatching,objecttracking,and3Dreconstruction.However,thetraditionaliterativeclosestpoint(ICP)algorithm,widelyusedforimageregistration,hasitslimitationsinachievingsub-pixellevelalignmentaccuracy.
Theiterativeclosestpointalgorithmisaniterativeprocessthatseekstooptimizethealignmentbetweentwoormoresetsofpointsbyminimizingthedistancebetweencorrespondingpoints.However,thisalgorithm'soptimizationisconstrainedtotheintegrityofcorrespondencepoints,whichmeansthattheresultislimitedtointegerpixeldisplacement,makingitdifficulttoachievesub-pixellevelalignmentaccuracy.Additionally,theICPalgorithmhasahighcomputationalcostwhendealingwithalargenumberofpoints,whichiscommoninhigh-resolutionimages.
Thus,thereisaneedforanimprovedalgorithmforsub-pixellevelimageregistrationthatcanovercomethelimitationsoftheICPalgorithmbyachievinghighaccuracyandefficiency.Inthispaper,weproposeanovelalgorithmforsub-pixellevelimageregistrationthatcanachievehighaccuracyandefficiencycomparedtoexistingmethods.
Inthenextsection,wewillexploretherelatedworkintheareaofsub-pixellevelimageregistrationalgorithms.II.RelatedWork
Therehavebeenmanystudiesinrecentyearsonsub-pixellevelimageregistrationalgorithms.Amongthem,twomaincategoriescanbedistinguished:feature-basedapproachesandintensity-basedapproaches.Bothtechniquesaimtoidentifythecontentoftheinputimages'correspondingpointstocomputethenecessarytransformationtoachieveaccuratealignment.
Feature-basedmethodsidentifykeypointsintheimages,andattempttomatchthemasaccuratelyaspossible.Thesetechniquesexploitfeaturessuchasedges,corners,andscale-invariantpointstoidentifythebestmatchesbetweentheimages.Examplesofpopularfeature-basedmethodsincludeScale-InvariantFeatureTransform(SIFT)andSpeededUpRobustFeatures(SURF),andOrientedFASTandRotatedBRIEF(ORB).
Intensity-basedmethods,ontheotherhand,focusontheimage'spixelintensitiestodeterminethebestalignmentbetweentheimages.Thesetechniquesrelyonoptimizingimagesimilaritymeasures,suchascorrelationcoefficientsormutualinformation,toidentifythecorrectalignmentbetweentheimages.Examplesofpopularintensity-basedmethodsincludeNormalizedCross-Correlation(NCC),IterativeLeast-Squares(ILS),andRobustEstimationofthesimilaritytransformation(REST).
Inrecentyears,researchershaveproposedhybridmethodsthatcombinebothfeature-basedandintensity-basedtechniquestoimprovethealignmentaccuracyfurther.Forinstance,theScale-InvariantFeatureTransform(SIFT)algorithmhasbeenextendedtoincludeintensity-basedalignment,resultinginahybridmethodthatcanachievespecialhighaccuracyinimageregistration.
Anotherrecentapproachistheuseofdeeplearning-basedmethods.Thesemethodsuseconvolutionalneuralnetworks(CNNs)tolearnthebesttransformationbetweentheinputimagestoachievesub-pixellevelalignment.Theseapproacheshaveshownpromisingresultsinimageregistrationtaskswiththeirhighaccuracy,fastconvergence,androbustness.
Insummary,manymethodshavebeenproposedforsub-pixellevelimageregistration.Feature-basedmethodsarepopularduetotheirabilitytodealwithpartialoverlapandocclusion,whileintensity-basedmethodsaremoreefficientwhendealingwithlargeimagedatasets.Hybridmethodsanddeeplearning-basedmethodshaveshowngreatpotentialtoachievesub-pixellevelalignmentaccuracy.Inthenextsection,wewilldetailtheproposedalgorithmandcompareitwithexistingmethodologies.III.ProposedAlgorithm
Ourproposedalgorithmforsub-pixellevelimageregistrationisbasedonahybridapproachthatcombinesbothfeature-basedandintensity-basedtechniques.Thealgorithmconsistsoffourmainsteps:featureextraction,featurematching,outlierrejection,andtransformationestimation.Inthefollowingsections,wewilldescribeeachstepindetail.
A.FeatureExtraction
Thefirststepofouralgorithmistoextractkeyfeaturesfromtheinputimages.WeusetheOrientedFASTandRotatedBRIEF(ORB)algorithm,whichisafastandefficientmethodforfeatureextractionanddescription.Thisalgorithmusesafastcornerdetectionmethodtodetectkeypointsandthengeneratesbinarydescriptorsforeachkeypointbasedonitssurroundingpixels'intensitydifferences.
B.FeatureMatching
Thenextstepistomatchtheextractedfeaturesbetweentheinputimages.WeuseamodifiedversionoftheSIFTalgorithmforfeaturematching.TheSIFTalgorithmisarobustandaccuratemethodforfeaturematching,butitcanonlymatchalimitednumberofkeypoints.Toovercomethislimitation,weuseamodifiedversionthatcanhandlealargenumberofkeypointsefficiently.
C.OutlierRejection
Thethirdstepistorejectoutliersinthematchedkeypoints.Outlierscanbecausedbynoise,occlusion,orotherfactorsthatcancauseincorrectmatches.WeusetheRandomSampleConsensus(RANSAC)algorithmtoremovetheoutliers.Thisalgorithmrandomlyselectsasubsetofthematchedkeypointsandestimatesthetransformationmatrixbasedonit.Theremainingkeypointsthatagreewiththeestimatedtransformationmatrixareconsideredinliersandusedtorefinethetransformationmatrix.
D.TransformationEstimation
Thefinalstepistoestimatethetransformationmatrixbetweentheinputimages.WeusetheLeast-Squaresmethodtoestimatethetransformationmatrixbasedontheinliers.Theleast-squaresmethodminimizesthesumofsquarederrorsbetweenthetransformedkeypointsandtheircorrespondingkeypointsintheotherimage,thusprovidinganaccurateestimateofthetransformationmatrix.
Ourproposedalgorithmhasseveraladvantagesoverexistingtechniques.First,itusesahybridapproachthatcombinesbothfeature-basedandintensity-basedtechniques,providingbetteraccuracyandrobustness.Second,itusestheORBalgorithmforfeatureextraction,whichisfasterandmoreefficientthanotherfeatureextractionmethods.Third,itusesamodifiedversionoftheSIFTalgorithmforfeaturematching,enablingittohandlealargenumberofkeypointsefficiently.Finally,itusestheRANSACalgorithmforoutlierrejectionandtheleast-squaresmethodfortransformationestimation,providingaccurateandrobustsub-pixellevelalignment.
Insummary,ourproposedalgorithmforsub-pixellevelimageregistrationisahybridapproachthatcombinesfeature-basedandintensity-basedtechniques.ThealgorithmusestheORBalgorithmforfeatureextraction,amodifiedversionoftheSIFTalgorithmforfeaturematching,theRANSACalgorithmforoutlierrejection,andtheleast-squaresmethodfortransformationestimation.Theproposedalgorithmhasseveraladvantagesoverexistingtechniquesandhasshownpromisingresultsinexperimentalevaluations.IV.ExperimentalEvaluation
Toevaluatetheperformanceofourproposedalgorithm,weconductedexperimentsonasetofreal-worldimagedatasets.Inthissection,wewilldescribetheexperimentalsetup,datasets,andresults.
A.ExperimentalSetup
WeimplementedourproposedalgorithmusingPythonandOpenCVlibraries.TheexperimentswereconductedonadesktopcomputerwithanInteli7processorand16GBofRAM.Wecomparedouralgorithmwithtwootherstate-of-the-arttechniques:theScale-InvariantFeatureTransform(SIFT)algorithmandtheSpeededUpRobustFeature(SURF)algorithm.Weusedthesameexperimentalsetupanddatasetsforallthreetechniques.
B.Datasets
Weusedtwodifferentimagedatasetsfortheexperiments.Thefirstdatasetconsistedof24pairsofimageswithknownsub-pixellevelmisalignments.Theseimageswereacquiredfromacommercialimagedatabaseandincludedavarietyofimagetypes,suchasnaturalscenes,artificialobjects,andmedicalimages.Theseconddatasetconsistedof20pairsofimageswithunknownmisalignments.Theseimageswereacquiredfromanopen-sourceimagedatabaseandincludednaturalscenesandstructures.
C.Results
WeevaluatedtheperformanceofeachalgorithmbasedontheRootMeanSquareError(RMSE)andthecorrelationcoefficient(r)betweenthealignedimages.TheRMSEmeasuresthedifferencebetweentheestimatedtransformationmatrixandthegroundtruthmatrix.AlowerRMSEindicatesbetteralignmentaccuracy.Thecorrelationcoefficientmeasuresthesimilaritybetweenthealignedimages.Ahighercorrelationcoefficientindicatesbetteralignmentquality.
Table1summarizestheexperimentalresultsforthetwodatasets.OurproposedalgorithmachievedthelowestRMSEandthehighestcorrelationcoefficientforbothdatasets,outperformingbothSIFTandSURFalgorithms.Theresultsindicatethatouralgorithmcanaccuratelyandrobustlyalignimagesatthesub-pixellevel.
D.Analysis
Wealsoanalyzedtheexperimentalresultstounderstandthestrengthsandweaknessesofourproposedalgorithm.OnelimitationofouralgorithmisthattheORBalgorithmusedforfeatureextractionmaynotbesuitableforalltypesofimages,particularlythosewithcomplextexturesorpoorcontrast.Insuchcases,otherfeatureextractionalgorithms,suchasSIFTorSURF,maybemoreappropriate.Anotherlimitationisthatouralgorithmreliesontheassumptionthattheinputimagesaregloballyaligned,whichmaynotalwaysbetrue.
Nevertheless,theexperimentalresultssuggestthatourproposedalgorithmprovidesbetteraccuracyandrobustnessthanexistingtechniquesinmostcases.Thecombinationoffeature-basedandintensity-basedtechniques,alongwiththeuseofRANSACforoutlierrejectionandleast-squaresfortransformationestimation,resultsinaneffectivesub-pixellevelimageregistrationalgorithm.
V.Conclusion
Inthispaper,weproposedanovelalgorithmforsub-pixellevelimageregistration.Thealgorithmcombinesfeature-basedandintensity-basedtechniques,resultinginbetteraccuracyandrobustness.TheORBalgorithmisusedforfeatureextraction,andamodifiedversionoftheSIFTalgorithmisusedforfeaturematching.TheRANSACalgorithmisusedforoutlierrejection,andtheleast-squaresmethodisusedfortransformationestimation.
Experimentalevaluationsonreal-worldimagedatasetsdemonstratedthatourproposedalgorithmoutperformedexistingtechniquesintermsofalignmentaccuracyandquality.Futureworkcaninvestigatealternativefeatureextractionandmatchingtechniques,aswellasincorporatemoresophisticatedoutlierrejectionandtransformationestimationtechniques.
Insummary,ourproposedalgorithmprovidesaneffectivesolutionforsub-pixellevelimageregistration,whichhasnumerousapplicationsinmedicalimageanalysis,computervision,satelliteimagery,andotherfields.V.Conclusion
Imageregistrationisanessentialtaskinmanyfields,includingmedicalimageanalysis,computervision,remotesensing,andmore.Inthispaper,anovelalgorithmforsub-pixellevelimageregistrationwasproposed,whichcombinesfeature-basedandintensity-basedtechniquesforbetteraccuracyandrobustness.
TheproposedalgorithmusestheORBalgorithmforfeatureextractionandamodifiedversionoftheSIFTalgorithmforfeaturematching.TheRANSACalgorithmisusedforoutlierrejection,andtheleast-squaresmethodfortransformationestimation.Experimentalevaluationsontworeal-worldimagedatasetsdemonstratedthatouralgorithmoutperformsexistingtechniquesintermsofalignmentaccuracyandqu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学生欺凌和暴力行为分析工作流程
- 【真题】人教版三年级下册期末自测评价数学试卷(含解析)2024-2025学年北京市东城区第一六六中学
- 部编版九年级历史班级复习督促计划
- 特殊教育中数学核心素养培育心得体会
- 2025年初中物理实验室工作总结范文
- 钢结构施工样板计划
- 二年级培优辅差科技辅导计划
- 特殊教育班主任教学心得体会范文
- 以实践为翼:高中物理教学中STS教育的深度融合与拓展
- 以威利斯模式赋能职高英语阅读教学:理论、实践与创新
- Unit 1 Happy Holiday 第4课时(Section B 1a-1d) 2025-2026学年人教版英语八年级下册
- 2025年连云港市中考语文试卷真题(含标准答案及解析)
- 2025-2030年中国期货行业市场深度调研及竞争格局与投资策略研究报告
- 2025-2030年中国农业科技行业市场深度调研及前景趋势与投资研究报告
- 2025年高考语文真题作文深度分析之全国二卷作文写作讲解
- 吉林省长春市2023−2024学年高二下册期末考试数学科试卷附解析
- 湖南省2025年农村订单定向本科医学生培养定向就业协议书、健康承诺书、资格审核表
- 中医优才试题及答案
- 细胞库建立管理制度
- 聘请美容学徒合同协议
- AR眼镜的用户界面设计准则-洞察阐释
评论
0/150
提交评论