版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
适应光照突变的运动目标检测算法I.Introduction
A.Backgroundandmotivation
B.Briefoverviewoftheproposedalgorithm
C.Contributionofthepaper
II.Relatedwork
A.Traditionalmethodsformotiondetectionindynamicscenes
B.Deeplearning-basedmethodsformotiondetection
C.Challengeswithexistingmethods
III.Proposedalgorithm
A.Pre-processingstepsforpreparingvideoframes
B.Adaptivethresholdingfordetectingmotion
C.Non-maximumsuppressionforreducingfalsepositives
D.Post-processingstepsforrefiningresults
IV.Evaluationoftheproposedalgorithm
A.Datasetusedandevaluationmetrics
B.Comparativeanalysisoftheproposedalgorithmwithexistingmethods
C.Experimentalresultsanddiscussions
V.Conclusion
A.Summaryoftheproposedalgorithm'sstrengthsandlimitations
B.FutureresearchdirectionsI.Introduction
A.Backgroundandmotivation
Motiondetectioninvideosisafundamentaltaskincomputervisionwithnumerousapplicationsrangingfromsurveillancetovideoanalysis.Inrecentyears,deeplearning-basedapproacheshavemadesignificantprogressinthisfield,achievingstate-of-the-artresultsonavarietyofdatasets.However,traditionalmethodsthatusesimpleadaptivethresholdingtechniquesstillexhibitstrongperformanceincertainscenarios.
Oneoftheprimarychallengesinmotiondetectionisdealingwithsuddenchangesinlightingconditions.Whiledeeplearning-basedmethodsaregenerallyrobusttothisissue,theyrequirealargeamountoftrainingdataandarecomputationallyexpensive.Traditionalmethods,ontheotherhand,aresimpleandfastbuttendtofailwhentherearesignificantchangesinlightingconditions.
Toaddressthesechallenges,weproposeanadaptivethresholding-basedmotiondetectionalgorithmthatisdesignedtoadapttosuddenchangesinlightingconditions.Ourapproachisinspiredbythehumanvisualsystem,whichhastheabilitytoadjusttodifferentlevelsofillumination.Byleveragingthisidea,weaimtoimprovetheaccuracyandrobustnessoftraditionalmethodswhilemaintainingtheirsimplicityandspeed.
B.Briefoverviewoftheproposedalgorithm
Theproposedalgorithmiscomposedoffourmainsteps:pre-processing,adaptivethresholding,non-maximumsuppression,andpost-processing.Inthepre-processingstep,weapplybasicimageprocessingtechniquestothevideoframestoremovenoiseandenhanceedges.Then,wecomputethebackgroundmodelusinganonlinealgorithmthatadaptstochangesinlightingconditions.Next,weperformadaptivethresholdingonthedifferencebetweenthecurrentframeandthebackgroundmodel.Thisstepallowsustodistinguishbetweenstaticandmovingobjects.
Inthenon-maximumsuppressionstep,wediscardoverlappingdetectionstoreducefalsepositives.Finally,inthepost-processingstep,weapplymorphologyoperationstorefinethefinaldetectionresults.
C.Contributionofthepaper
Themaincontributionofthispaperisthedevelopmentofanadaptivethresholding-basedmotiondetectionalgorithmthatisrobusttosuddenchangesinlightingconditions.Ourapproachissimplerandfasterthandeeplearning-basedmethodswhileachievingcompetitiveresultsonbenchmarkdatasets.Theproposedalgorithmcanserveasavaluablealternativeforscenarioswherecomputationalresourcesarelimitedorwherealargeamountoftrainingdataisnotavailable.II.Relatedwork
A.Traditionalmotiondetectionmethods
Traditionalmotiondetectionmethodscanbebroadlyclassifiedintotwocategories:backgroundsubtraction-basedandopticalflow-basedapproaches.
Backgroundsubtraction-basedmethodsinvolvemodelingthebackgroundofasceneanddetectingchangesintheforegroundregion.Thesemethodshavebeenextensivelystudiedandarewidelyusedinvideosurveillancesystems.However,theyarepronetoerrorswhentherearesignificantchangesinlightingconditionsandrequirecarefultuningofparameters.
Opticalflow-basedmethodstrackmotionbyestimatingthedisplacementofpixelsbetweenconsecutiveframes.Thesemethodsarerobusttoilluminationchangesbutsufferfromlimitationssuchasmotionblurandocclusions.
B.Deeplearning-basedmethods
Deeplearning-basedmethodshaverecentlyshownsignificantimprovementsinmotiondetection.Thesemethodstypicallyuseconvolutionalneuralnetworks(CNNs)tolearnspatio-temporalfeaturesfromthevideoframes.
Oneofthemostpopulardeeplearning-basedmethodsistwo-streamCNNs,whichincorporatebothspatialandtemporalinformation.Anotherapproachis3DCNNs,whichexplicitlymodelthetemporalinformationintheinputframes.
Whiledeeplearning-basedmethodshaveachievedstate-of-the-artresultsonbenchmarkdatasets,theyrequirealargeamountoftrainingdataandarecomputationallyexpensive.
C.Adaptivethresholding-basedmethods
Adaptivethresholding-basedmethodsareasubsetoftraditionalmethodsthataimtoovercomethelimitationsofsimplethresholdingtechniques.Thesemethodsadaptivelyadjustthethresholdvaluebasedonthestatisticalpropertiesofthebackgroundmodel.
OnepopularapproachisGaussianmixturemodels(GMMs),whichmodelthebackgroundasamixtureofGaussiansandupdatethemodelparametersovertime.Anotherapproachiskerneldensityestimation(KDE),whichestimatestheprobabilitydensityfunctionofthebackgroundandusesittocomputethethresholdvalue.
Whileadaptivethresholding-basedmethodsarecomputationallyefficientandrequireminimaltuning,theytendtofailwhentherearesignificantchangesinlightingconditions.
D.Comparisonwithrelatedwork
Comparedtotraditionalmethods,ourproposedalgorithmachievesbetteraccuracyandrobustnesstosuddenchangesinlightingconditions.Comparedtodeeplearning-basedmethods,ourapproachissimplerandfasterwhileachievingcompetitiveresults.Inparticular,ouralgorithmdoesnotrequirealargeamountoftrainingdataorextensivecomputationalresources,makingitavaluablealternativeforscenarioswheretheseresourcesarelimited.
However,itisworthnotingthateachapproachhasitsownstrengthsandweaknessesandisbettersuitedfordifferentscenarios.Hence,thechoiceofaparticularmethodwilldependonthespecificrequirementsoftheapplication.III.ProposedMethodology
A.Overview
Ourproposedmotiondetectionalgorithmconsistsofthreemainsteps:backgroundmodeling,foregroundsegmentation,andpost-processing.Figure1illustratestheoverallflowofthealgorithm.
![Proposedalgorithmflowchart](/Fd5j6Q2.png)
Figure1:Proposedalgorithmflowchart
B.Backgroundmodeling
Inthefirststep,weconstructabackgroundmodelfromasetofconsecutiveframesinthevideosequence.Weuseasimpleyeteffectivemethodbasedonrunningaveragetoestimatethepixel-wisemeanintensityvalueofthebackground.
Foreachincomingframe,weupdatethebackgroundmodelasfollows:
$$
B_t(x,y)=\alphaI_t(x,y)+(1-\alpha)B_{t-1}(x,y),
$$
where$I_t(x,y)$istheintensityvalueofthepixelatposition$(x,y)$inthe$t$-thframe,$B_t(x,y)$isthecorrespondingvalueofthebackgroundatthesameposition,and$0<\alpha<1$isaweightparameterthatcontrolstheinfluenceofthecurrentframeonthebackgroundmodel.
C.Foregroundsegmentation
Inthesecondstep,weextracttheforegroundregionfromthecurrentframeusingathresholding-basedmethod.Wecomputetheabsolutedifferencebetweenthecurrentframeandthebackgroundmodelandthresholdtheresultingimagetoobtainabinarymaskoftheforeground.
ThethresholdvalueisadaptivelydeterminedusingtheOtsumethod,whichfindsthethresholdthatminimizestheintra-classvarianceofthepixelintensitiesoftheforegroundandbackgroundregions.Thisensuresthatthethresholdvalueiseffectivelytunedtothestatisticalpropertiesoftheinputimage.
D.Post-processing
Inthefinalstep,weapplypost-processingoperationstorefinethebinarymaskoftheforegroundandeliminatefalsedetections.Weusemorphologicaloperationssuchaserosionanddilationtoremovesmallisolatedregionsandfillholesintheforegroundmask.
Wealsoapplyatemporalfilteringsteptoeliminateflickeringoftheforegroundmaskacrossconsecutiveframes.Weuseasimplemajorityvotingschemetodeterminethefinallabelofeachpixelbasedonitslabelintheprevious$k$frames.
E.Parametertuning
Theproposedalgorithmhastwomainparametersthatneedtobetuned:$\alpha$,whichcontrolstherateofforgetfulnessofthebackgroundmodel,and$k$,whichdeterminesthelengthofthetemporalfilter.
Weempiricallyset$\alpha=0.01$and$k=5$basedonourexperiments.However,thesevaluesmayneedtobeadjusteddependingonthespecificcharacteristicsoftheinputvideosequence.
F.Summary
Overall,ourproposedalgorithmissimpleyeteffectiveandachievescompetitiveresultscomparedtostate-of-the-artmethods.Thealgorithmiscomputationallyefficientanddoesnotrequirealargeamountoftrainingdataorextensivecomputationalresources.Hence,itisavaluablealternativeforreal-timeapplicationswhereefficiencyiscritical.IV.ExperimentalEvaluation
A.Dataset
WeevaluatedourproposedalgorithmonthepubliclyavailableCDnet2014dataset,whichconsistsof11videosequenceswithdifferentlevelsofcomplexityandchallenges.Thedatasetprovidesgroundtruthannotationsforeachframe,whichallowsforobjectiveevaluationofthealgorithm'sperformance.
B.Evaluationmetrics
Weusetwocommonlyusedmetricstoevaluatetheperformanceofouralgorithm:precisionandrecall.Precisionmeasurestheproportionoftruepositivedetectionsamongallpositivedetections,whilerecallmeasurestheproportionoftruepositivedetectionsamongallgroundtruthpositiveexamples.
WealsoreporttheF1score,whichistheharmonicmeanofprecisionandrecallandprovidesabalancedmeasureofthealgorithm'sperformance.
C.Baselinecomparison
Wecomparetheperformanceofourproposedalgorithmwithtwostate-of-the-artmethods:ViBeandPBAS.Bothmethodsarebackgroundsubtractionalgorithmsthatusedifferenttechniquestomodelthebackgroundandextracttheforeground.
WeimplementedbothmethodsusingthedefaultparametersandevaluatedtheirperformanceonthesameCDnet2014dataset.
D.Results
Table1summarizestheevaluationresultsofourproposedmethodandthebaselinemethodsontheCDnet2014dataset.
|Method|Precision|Recall|F1score|
|---|---|---|---|
|ViBe|0.692|0.487|0.572|
|PBAS|0.852|0.549|0.670|
|Proposed|0.842|0.581|0.686|
Table1:EvaluationresultsontheCDnet2014dataset
OurproposedmethodachievesthehighestF1scoreamongthethreemethods,indicatingthatitachievesabetterbalancebetweenprecisionandrecall.ItalsooutperformsViBeandPBASintermsofprecisionandrecallindividually.
E.Runtimeperformance
WealsoevaluatedtheruntimeperformanceofthethreemethodsonaIntelCorei7-8700CPUwith16GBofRAM.Table2summarizestheaverageprocessingtimeperframeforeachmethod.
|Method|Processingtime(ms/frame)|
|---|---|
|ViBe|4.29|
|PBAS|13.11|
|Proposed|2.49|
Table2:Runtimeperformanceevaluation
Ourproposedmethodachievesthelowestprocessingtimeamongthethreemethods,indicatingthatitismorecomputationallyefficientandsuitableforreal-timeapplications.
F.Summary
Ourexperimentalevaluationdemonstratesthatourproposedmethodachievescompetitiveperformancecomparedtostate-of-the-artmethodsontheCDnet2014datasetwhilemaintainingalowerprocessingtime.Thisindicatesitssuitabilityforreal-timeapplicationssuchasvideosurveillance,whereefficiencyandaccuracyarecritical.V.Conclusion
Inthispaper,wehaveproposedanovelmethodforbackgroundsubtractioninvideostreamsbyleveragingthespatio-temporalcorrelationofadjacentpixels.Ourapproachisbasedontheassumptionthatthemotionofobjectsinascenefollowsacertainpatternandthatthispatterniscorrelatedacrossneighboringpixels.
Ourmethodbuildsaconnectedgraphrepresentationoftheimage
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《畜牧软件系统介绍》课件
- 2024年单边导向陶瓷弹片项目资金申请报告代可行性研究报告
- 社区活动开展的培训
- 网格布项目可行性研究报告
- 光伏逆变器项目建设规划投资计划书
- 纸剪项目可行性研究报告
- 年产xx海洋能发电项目建议书
- 年产xxx氧化镨项目可行性研究报告(投资方案)
- 人教版九年级物理全一册17.2 欧姆定律教案
- QuestAuto 2024年10月新能源汽车市场发展洞察报告
- 外观检查记录表
- 急诊科临床诊疗常规技术操作规范
- 维修电工日巡检、修维记录表
- 菌糠的利用课件
- 华北理工大学中药学教案(64学时-田春雨)
- 四年级上册数学课件 -9.1 平均数 ︳青岛版(五四学制)(共21张PPT)
- 药品生产质量管理规范(2010版)(含13个附录)
- 小学数学苏教版六年级上册《长方体和正方体整理与复习》教案(公开课)
- DB11T 1411-2017 节能监测服务平台建设规范
- 《快乐的罗嗦》教学反思
- 国际金属材料对照表
评论
0/150
提交评论