版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
适应光照突变的运动目标检测算法I.Introduction
A.Backgroundandmotivation
B.Briefoverviewoftheproposedalgorithm
C.Contributionofthepaper
II.Relatedwork
A.Traditionalmethodsformotiondetectionindynamicscenes
B.Deeplearning-basedmethodsformotiondetection
C.Challengeswithexistingmethods
III.Proposedalgorithm
A.Pre-processingstepsforpreparingvideoframes
B.Adaptivethresholdingfordetectingmotion
C.Non-maximumsuppressionforreducingfalsepositives
D.Post-processingstepsforrefiningresults
IV.Evaluationoftheproposedalgorithm
A.Datasetusedandevaluationmetrics
B.Comparativeanalysisoftheproposedalgorithmwithexistingmethods
C.Experimentalresultsanddiscussions
V.Conclusion
A.Summaryoftheproposedalgorithm'sstrengthsandlimitations
B.FutureresearchdirectionsI.Introduction
A.Backgroundandmotivation
Motiondetectioninvideosisafundamentaltaskincomputervisionwithnumerousapplicationsrangingfromsurveillancetovideoanalysis.Inrecentyears,deeplearning-basedapproacheshavemadesignificantprogressinthisfield,achievingstate-of-the-artresultsonavarietyofdatasets.However,traditionalmethodsthatusesimpleadaptivethresholdingtechniquesstillexhibitstrongperformanceincertainscenarios.
Oneoftheprimarychallengesinmotiondetectionisdealingwithsuddenchangesinlightingconditions.Whiledeeplearning-basedmethodsaregenerallyrobusttothisissue,theyrequirealargeamountoftrainingdataandarecomputationallyexpensive.Traditionalmethods,ontheotherhand,aresimpleandfastbuttendtofailwhentherearesignificantchangesinlightingconditions.
Toaddressthesechallenges,weproposeanadaptivethresholding-basedmotiondetectionalgorithmthatisdesignedtoadapttosuddenchangesinlightingconditions.Ourapproachisinspiredbythehumanvisualsystem,whichhastheabilitytoadjusttodifferentlevelsofillumination.Byleveragingthisidea,weaimtoimprovetheaccuracyandrobustnessoftraditionalmethodswhilemaintainingtheirsimplicityandspeed.
B.Briefoverviewoftheproposedalgorithm
Theproposedalgorithmiscomposedoffourmainsteps:pre-processing,adaptivethresholding,non-maximumsuppression,andpost-processing.Inthepre-processingstep,weapplybasicimageprocessingtechniquestothevideoframestoremovenoiseandenhanceedges.Then,wecomputethebackgroundmodelusinganonlinealgorithmthatadaptstochangesinlightingconditions.Next,weperformadaptivethresholdingonthedifferencebetweenthecurrentframeandthebackgroundmodel.Thisstepallowsustodistinguishbetweenstaticandmovingobjects.
Inthenon-maximumsuppressionstep,wediscardoverlappingdetectionstoreducefalsepositives.Finally,inthepost-processingstep,weapplymorphologyoperationstorefinethefinaldetectionresults.
C.Contributionofthepaper
Themaincontributionofthispaperisthedevelopmentofanadaptivethresholding-basedmotiondetectionalgorithmthatisrobusttosuddenchangesinlightingconditions.Ourapproachissimplerandfasterthandeeplearning-basedmethodswhileachievingcompetitiveresultsonbenchmarkdatasets.Theproposedalgorithmcanserveasavaluablealternativeforscenarioswherecomputationalresourcesarelimitedorwherealargeamountoftrainingdataisnotavailable.II.Relatedwork
A.Traditionalmotiondetectionmethods
Traditionalmotiondetectionmethodscanbebroadlyclassifiedintotwocategories:backgroundsubtraction-basedandopticalflow-basedapproaches.
Backgroundsubtraction-basedmethodsinvolvemodelingthebackgroundofasceneanddetectingchangesintheforegroundregion.Thesemethodshavebeenextensivelystudiedandarewidelyusedinvideosurveillancesystems.However,theyarepronetoerrorswhentherearesignificantchangesinlightingconditionsandrequirecarefultuningofparameters.
Opticalflow-basedmethodstrackmotionbyestimatingthedisplacementofpixelsbetweenconsecutiveframes.Thesemethodsarerobusttoilluminationchangesbutsufferfromlimitationssuchasmotionblurandocclusions.
B.Deeplearning-basedmethods
Deeplearning-basedmethodshaverecentlyshownsignificantimprovementsinmotiondetection.Thesemethodstypicallyuseconvolutionalneuralnetworks(CNNs)tolearnspatio-temporalfeaturesfromthevideoframes.
Oneofthemostpopulardeeplearning-basedmethodsistwo-streamCNNs,whichincorporatebothspatialandtemporalinformation.Anotherapproachis3DCNNs,whichexplicitlymodelthetemporalinformationintheinputframes.
Whiledeeplearning-basedmethodshaveachievedstate-of-the-artresultsonbenchmarkdatasets,theyrequirealargeamountoftrainingdataandarecomputationallyexpensive.
C.Adaptivethresholding-basedmethods
Adaptivethresholding-basedmethodsareasubsetoftraditionalmethodsthataimtoovercomethelimitationsofsimplethresholdingtechniques.Thesemethodsadaptivelyadjustthethresholdvaluebasedonthestatisticalpropertiesofthebackgroundmodel.
OnepopularapproachisGaussianmixturemodels(GMMs),whichmodelthebackgroundasamixtureofGaussiansandupdatethemodelparametersovertime.Anotherapproachiskerneldensityestimation(KDE),whichestimatestheprobabilitydensityfunctionofthebackgroundandusesittocomputethethresholdvalue.
Whileadaptivethresholding-basedmethodsarecomputationallyefficientandrequireminimaltuning,theytendtofailwhentherearesignificantchangesinlightingconditions.
D.Comparisonwithrelatedwork
Comparedtotraditionalmethods,ourproposedalgorithmachievesbetteraccuracyandrobustnesstosuddenchangesinlightingconditions.Comparedtodeeplearning-basedmethods,ourapproachissimplerandfasterwhileachievingcompetitiveresults.Inparticular,ouralgorithmdoesnotrequirealargeamountoftrainingdataorextensivecomputationalresources,makingitavaluablealternativeforscenarioswheretheseresourcesarelimited.
However,itisworthnotingthateachapproachhasitsownstrengthsandweaknessesandisbettersuitedfordifferentscenarios.Hence,thechoiceofaparticularmethodwilldependonthespecificrequirementsoftheapplication.III.ProposedMethodology
A.Overview
Ourproposedmotiondetectionalgorithmconsistsofthreemainsteps:backgroundmodeling,foregroundsegmentation,andpost-processing.Figure1illustratestheoverallflowofthealgorithm.

Figure1:Proposedalgorithmflowchart
B.Backgroundmodeling
Inthefirststep,weconstructabackgroundmodelfromasetofconsecutiveframesinthevideosequence.Weuseasimpleyeteffectivemethodbasedonrunningaveragetoestimatethepixel-wisemeanintensityvalueofthebackground.
Foreachincomingframe,weupdatethebackgroundmodelasfollows:
$$
B_t(x,y)=\alphaI_t(x,y)+(1-\alpha)B_{t-1}(x,y),
$$
where$I_t(x,y)$istheintensityvalueofthepixelatposition$(x,y)$inthe$t$-thframe,$B_t(x,y)$isthecorrespondingvalueofthebackgroundatthesameposition,and$0<\alpha<1$isaweightparameterthatcontrolstheinfluenceofthecurrentframeonthebackgroundmodel.
C.Foregroundsegmentation
Inthesecondstep,weextracttheforegroundregionfromthecurrentframeusingathresholding-basedmethod.Wecomputetheabsolutedifferencebetweenthecurrentframeandthebackgroundmodelandthresholdtheresultingimagetoobtainabinarymaskoftheforeground.
ThethresholdvalueisadaptivelydeterminedusingtheOtsumethod,whichfindsthethresholdthatminimizestheintra-classvarianceofthepixelintensitiesoftheforegroundandbackgroundregions.Thisensuresthatthethresholdvalueiseffectivelytunedtothestatisticalpropertiesoftheinputimage.
D.Post-processing
Inthefinalstep,weapplypost-processingoperationstorefinethebinarymaskoftheforegroundandeliminatefalsedetections.Weusemorphologicaloperationssuchaserosionanddilationtoremovesmallisolatedregionsandfillholesintheforegroundmask.
Wealsoapplyatemporalfilteringsteptoeliminateflickeringoftheforegroundmaskacrossconsecutiveframes.Weuseasimplemajorityvotingschemetodeterminethefinallabelofeachpixelbasedonitslabelintheprevious$k$frames.
E.Parametertuning
Theproposedalgorithmhastwomainparametersthatneedtobetuned:$\alpha$,whichcontrolstherateofforgetfulnessofthebackgroundmodel,and$k$,whichdeterminesthelengthofthetemporalfilter.
Weempiricallyset$\alpha=0.01$and$k=5$basedonourexperiments.However,thesevaluesmayneedtobeadjusteddependingonthespecificcharacteristicsoftheinputvideosequence.
F.Summary
Overall,ourproposedalgorithmissimpleyeteffectiveandachievescompetitiveresultscomparedtostate-of-the-artmethods.Thealgorithmiscomputationallyefficientanddoesnotrequirealargeamountoftrainingdataorextensivecomputationalresources.Hence,itisavaluablealternativeforreal-timeapplicationswhereefficiencyiscritical.IV.ExperimentalEvaluation
A.Dataset
WeevaluatedourproposedalgorithmonthepubliclyavailableCDnet2014dataset,whichconsistsof11videosequenceswithdifferentlevelsofcomplexityandchallenges.Thedatasetprovidesgroundtruthannotationsforeachframe,whichallowsforobjectiveevaluationofthealgorithm'sperformance.
B.Evaluationmetrics
Weusetwocommonlyusedmetricstoevaluatetheperformanceofouralgorithm:precisionandrecall.Precisionmeasurestheproportionoftruepositivedetectionsamongallpositivedetections,whilerecallmeasurestheproportionoftruepositivedetectionsamongallgroundtruthpositiveexamples.
WealsoreporttheF1score,whichistheharmonicmeanofprecisionandrecallandprovidesabalancedmeasureofthealgorithm'sperformance.
C.Baselinecomparison
Wecomparetheperformanceofourproposedalgorithmwithtwostate-of-the-artmethods:ViBeandPBAS.Bothmethodsarebackgroundsubtractionalgorithmsthatusedifferenttechniquestomodelthebackgroundandextracttheforeground.
WeimplementedbothmethodsusingthedefaultparametersandevaluatedtheirperformanceonthesameCDnet2014dataset.
D.Results
Table1summarizestheevaluationresultsofourproposedmethodandthebaselinemethodsontheCDnet2014dataset.
|Method|Precision|Recall|F1score|
|---|---|---|---|
|ViBe|0.692|0.487|0.572|
|PBAS|0.852|0.549|0.670|
|Proposed|0.842|0.581|0.686|
Table1:EvaluationresultsontheCDnet2014dataset
OurproposedmethodachievesthehighestF1scoreamongthethreemethods,indicatingthatitachievesabetterbalancebetweenprecisionandrecall.ItalsooutperformsViBeandPBASintermsofprecisionandrecallindividually.
E.Runtimeperformance
WealsoevaluatedtheruntimeperformanceofthethreemethodsonaIntelCorei7-8700CPUwith16GBofRAM.Table2summarizestheaverageprocessingtimeperframeforeachmethod.
|Method|Processingtime(ms/frame)|
|---|---|
|ViBe|4.29|
|PBAS|13.11|
|Proposed|2.49|
Table2:Runtimeperformanceevaluation
Ourproposedmethodachievesthelowestprocessingtimeamongthethreemethods,indicatingthatitismorecomputationallyefficientandsuitableforreal-timeapplications.
F.Summary
Ourexperimentalevaluationdemonstratesthatourproposedmethodachievescompetitiveperformancecomparedtostate-of-the-artmethodsontheCDnet2014datasetwhilemaintainingalowerprocessingtime.Thisindicatesitssuitabilityforreal-timeapplicationssuchasvideosurveillance,whereefficiencyandaccuracyarecritical.V.Conclusion
Inthispaper,wehaveproposedanovelmethodforbackgroundsubtractioninvideostreamsbyleveragingthespatio-temporalcorrelationofadjacentpixels.Ourapproachisbasedontheassumptionthatthemotionofobjectsinascenefollowsacertainpatternandthatthispatterniscorrelatedacrossneighboringpixels.
Ourmethodbuildsaconnectedgraphrepresentationoftheimage
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《复数的四则运算》学考达标练
- 2026年文化创意产业文化项目推广与传播效果评估题集
- 2026年电商平台的税务管理技巧与实战题库
- 2026年环境工程师环保技术测试题
- 2026年生物医学工程专业知识试题生物材料与医疗器械
- 2026年教育信息化项目管理与实施案例分析与实践操作题目
- 2026年现代管理学知识综合测试题目
- 2026年现代通信技术与网络管理专业题集
- 2026年财务分析专业训练公司财务报告深度解析题集
- 2026年生物科学基础知识与实验技能测试题集
- 生产车间首检巡检制度
- 摄食训练技术
- 2026年中考物理全真模拟试卷及答案(共五套)
- 备战高考:高三班级管理与激励策略
- 2025年生物多样性保护与生态修复项目可行性研究报告
- 临床检验科主任:检验技术在临床应用与质量控制
- 等离子切割技术应用要点
- 老年人抑郁症宣教
- 2025年无人船行业分析报告及未来发展趋势预测
- 艾滋病的抗病毒治疗
- 核心高考高频688词汇(高考高频词汇)
评论
0/150
提交评论