版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学下学期期末试卷及参考答案不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要让追求之舟停泊在幻想的港湾,而应扬起奋斗的风帆,驶向现实生活的大海。下面好范文为你带来一些关于高一下学期期末试卷,希望对大家有所帮助。A.{-|﹣1≤-≤2}B.{-|﹣1≤-<2}C.{-|-<﹣1或-≥2}D.{-|0A.B.C.D.A.B.C.1D.2A.B.C.D.A.﹣B.﹣C.﹣6﹣D.﹣6+A.63B.45C.36D.27A.第一象限角B.第二象限角C.第三象限角D.第四象限角A.5B.4C.3D.2A.a∥a且b∥βB.a∥a且b⊥βC.a?α且b⊥βD.a⊥α且b⊥βA.g(-)=﹣2cos2-B.g(-)=﹣2sin2-C.D.A.7B.7C.7D.8A.B.C.2D.﹣2A.10B.11C.12D.13A.B.C.2D.2(tan18°+tan27°)A.B.C.(1,3)D.(2,3)(1)假设∥,求|﹣|(2)假设与夹角为锐角,求-的取值范围.(Ⅰ)求{an}和{bn}的通项公式.(Ⅱ)令Cn=nbn(n∈N+),求{}的前n项和Tn.(Ⅰ)求cosA的值;(Ⅱ)假设a=4,b=5,求向量在方向上的投影.(1)求证:AE∥平面BFD;(2)求三棱锥A﹣DBE的体积;(3)求二面角D﹣BE﹣A的大小.(Ⅰ)求m的值及f(-)的解析式;(Ⅱ)设∠PRQ=θ,求tanθ.(Ⅰ)求证:{lgan}是等差数列;(Ⅱ)设Tn是数列{}的前n项和,求Tn;(Ⅲ)求使Tn>(m2﹣5m)对所有的n∈N-恒成立的整数m的取值集合A.{-|﹣1≤-≤2}B.{-|﹣1≤-<2}C.{-|-<﹣1或-≥2}D.{-|0【考点】并集及其运算.【分析】求出A与B中不等式的解集,分别确定出A与B,找出两集合的并集即可.【解答】解:由A中不等式变形得:≤0,即(-+1)(-﹣2)<0,且-﹣2≠0,解得:﹣1≤-<2,即A={-|﹣1≤-<2},由B中不等式变形得:ln-<0=ln1,得到0那么A∪B={-|﹣1≤-<2},应选:B.A.B.C.D.【考点】诱导公式的作用.【分析】等式中的角变形后,利用诱导公式化简,即可求出cosα的值.【解答】解:sin(+α)=sin(2π++α)=sin(+α)=cosα=.应选C.A.B.C.1D.2【考点】平面向量的基本定理及其意义.【分析】如下图,由于=+,可得:PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.即可得出.【解答】解:如下图,∵=+,∴PA是平行四边形PBAC的对角线,PA与BC的交点即为BC的中点D.∴=1.应选:C.A.B.C.D.【考点】正弦定理.【分析】由及正弦定理可得sinC==,又AB【解答】解:∵AB=2,AC=3,∠B=60°,∴由正弦定理可得:sinC===,又∵AB∴cosC==.应选:D.A.﹣B.﹣C.﹣6﹣D.﹣6+【考点】平面向量数量积的运算.【分析】将式子展开计算.【解答】解:(﹣2)?(3﹣4)=3﹣4﹣6+8=3×1×1×cos120°﹣4×1×1×cos60°﹣6×12+8×1×1×cos60°=﹣﹣2﹣6+4=﹣.应选:B.A.63B.45C.36D.27【考点】等差数列的性质.【分析】观察下标间的关系,知应用等差数列的性质求得.【解答】解:由等差数列性质知S3、S6﹣S3、S9﹣S6成等差数列,即9,27,S9﹣S6成等差,∴S9﹣S6=45∴a7+a8+a9=45应选B.A.第一象限角B.第二象限角C.第三象限角D.第四象限角【考点】三角函数值的符号.【分析】根据α的范围判断出的范围,再由含有绝对值的式子得到角的余弦值的符号,根据“一全正二正弦三正切四余弦”再进一步判断的范围.【解答】解:由α是第二象限角知,是第一或第三象限角.又∵|cos|=﹣cos,∴cos<0,∴是第三象限角.应选C.A.5B.4C.3D.2【考点】等差数列的通项公式.【分析】写出数列的第一、三、五、七、九项的和即5a1+(2d+4d+6d+8d),写出数列的第二、四、六、八、十项的和即5a1+(d+3d+5d+7d+9d),都用首项和公差表示,两式相减,得到结果.【解答】解:,应选C.A.a∥a且b∥βB.a∥a且b⊥βC.a?α且b⊥βD.a⊥α且b⊥β【考点】异面直线及其所成的角.【分析】作辅助线,利用二面角的定义和线线角的定义证明两角互补即可.【解答】解:如图,假设a⊥α且b⊥β,过A分别作直线a、b的平行线,交两平面α、β分别为C、B设平面ABC与棱l交点为O,连接BO、CO,易知四边形ABOC为平面四边形,可得∠BOC与∠BAC互补∵α﹣l﹣β是大小确定的一个二面角,而∠BOC就是它的平面角,∴∠BOC是定值,∴∠BAC也是定值,即a,b所成的角为定值.应选DA.g(-)=﹣2cos2-B.g(-)=﹣2sin2-C.D.【考点】函数y=Asin(ω-+φ)的图象变换;三角函数中的恒等变换应用.【分析】利用三角恒等变换化简函数f(-)的解析式,再利用函数y=Asin(ω-+φ)的图象变换规律,求得函数g(-)解析式.【解答】解:由题意可得f(-)==cos2-﹣sin2-﹣cos(+2-)=cos2-+sin2-=2cos(2-﹣),那么f(-)的图象向右平移个单位得到函数g(-)=2cos[2(-﹣)﹣]=2cos(2-﹣π)=﹣2cos2-,应选:A.A.7B.7C.7D.8【考点】由三视图求面积、体积.【分析】根据几何体的三视图知,该几何体是棱长为2的正方体,去掉两个三棱锥剩余的局部,结合图中数据即可求出它的体积.【解答】解:根据几何体的三视图知,该几何体是棱长为2的正方体,去掉两个三棱锥剩余的局部,如下图;所以该几何体的体积为V=V正方体﹣﹣=23﹣-12×2﹣-1×2×2=7.应选:A.A.B.C.2D.﹣2【考点】运用诱导公式化简求值.【分析】等式利用诱导公式化简求出sinα的值,根据α为第三象限角,利用同角三角函数间基本关系求出cosα的值,原式利用诱导公式化简,后将各自的值代入计算即可求出值.【解答】解:∵sin(π+α)=﹣sinα=,即sinα=﹣,α是第三象限的角,∴cosα=﹣,那么原式====﹣,应选:B.A.10B.11C.12D.13【考点】数列的求和.【分析】由,可得a1+a10=a2+a9=…=a5+a6=0,a11>0,那么有S9<0,S10=0,S11>0可求【解答】解:由,可得a1+a10=a2+a9=…=a5+a6=0,a11>0∴S9<0,S10=0,S11>0使Sn>0的n的最小值为11应选:BA.B.C.2D.2(tan18°+tan27°)【考点】两角和与差的正切函数.【分析】要求的式子即1+tan18°+tan27°+tan18°tan27°,再把tan18°+tan27°=tan45°(1﹣tan18°tan27°)代入,化简可得结果.【解答】解:(1+tan18°)(1+tan27°)=1+tan18°+tan27°+tan18°tan27°=1+tan45°(1﹣tan18°tan27°)+tan18°tan27°=2,应选C.A.B.C.(1,3)D.(2,3)【考点】数列的函数特性;分段函数的解析式求法及其图象的作法;函数单调性的判断与证明.【分析】根据题意,首先可得an通项公式,这是一个类似与分段函数的通项,结合分段函数的单调性的判断方法,可得;解可得答案.【解答】解:根据题意,an=f(n)=;要使{an}是递增数列,必有;解可得,2应选D.【考点】平面向量共线(平行)的坐标表示;三点共线.【分析】利用三点共线得到以三点中的一点为起点,另两点为终点的两个向量平行,利用向量平行的坐标形式的充要条件列出方程求出k.【解答】解:向量,∴又A、B、C三点共线故(4﹣k,﹣7)=λ(﹣2k,﹣2)∴k=故答案为【考点】平面向量数量积的运算.【分析】根据条件进行数量积的计算便可得出,从而便可求出,这样即可求出的值.【解答】解:根据条件,;∴;∴.故答案为:.【考点】正弦定理.【分析】利用余弦定理求得cos∠ABC=cos2θ的值,可得θ的值.【解答】解:∵△ABC中,BD为∠ABC的平分线,AB=3,BC=2,AC=,设∠ABD=θ,那么∠ABC=2θ,由余弦定理可得cos2θ===,∴2θ=,∴θ=,故答案为:.【考点】球内接多面体.【分析】如下图,连接AC,BD相交于点O1.取SC的中点,连接OO1.利用三角形的中位线定理可得OO1∥SA.由于SA⊥底面ABCD,可得OO1⊥底面ABCD.可得点O是四棱锥S﹣ABCD外接球的球心,SC是外接球的直径.【解答】解:如下图连接AC,BD相交于点O1.取SC的中点,连接OO1.那么OO1∥SA.∵SA⊥底面ABCD,∴OO1⊥底面ABCD.可得点O是四棱锥S﹣ABCD外接球的球心.因此SC是外接球的直径.∵SC2=SA2+AC2=9+8=17,∴4R2=17,∴四棱锥P﹣ABCD外接球的外表积为4πR2=π?17=17π.故答案为:17π【考点】等差数列的前n项和.【分析】先根据数列的通项公式大于等于0列出关于n的不等式,求出不等式的解集即可得到数列的前三项为负数,利用负数的绝对值等于它的相反数,求出前三项的绝对值,正数的绝对值等于本身把第四项及后面的各项化简,然后利用等差数列的前n项和的公式即可求出所求式子的值.【解答】解:由an=2n﹣7≥0,解得n≥,所以数列的前3项为负数,那么|a1|+|a2|+…+|a15|=5+3+1+1+3+5+…+23=9+12×1+×2=153.故答案为:153(1)假设∥,求|﹣|(2)假设与夹角为锐角,求-的取值范围.【考点】平面向量数量积的运算;平面向量共线(平行)的坐标表示.【分析】(1)根据向量平行与坐标的关系列方程解出-,得出的坐标,再计算的坐标,再计算||;(2)令得出-的范围,再去掉同向的情况即可.【解答】解:(1)∵,∴﹣-﹣-(2-+3)=0,解得-=0或-=﹣2.当-=0时,=(1,0),=(3,0),∴=(﹣2,0),∴||=2.当-=﹣2时,=(1,﹣2),=(﹣1,2),∴=(2,﹣4),∴||=2.综上,||=2或2.(2)∵与夹角为锐角,∴,∴2-+3﹣-2>0,解得﹣1又当-=0时,,∴-的取值范围是(﹣1,0)∪(0,3).(Ⅰ)求{an}和{bn}的通项公式.(Ⅱ)令Cn=nbn(n∈N+),求{}的前n项和Tn.【考点】等差数列与等比数列的综合;数列的求和.【分析】(Ⅰ)设公差为d,公比为q,那么a2b2=(3+d)q=12①,S3+b2=3a2+b2=3(3+d)+q=20②联立①②结合d>0可求d,q,利用等差数列,等比数列的通项公式可求an,bn(Ⅱ)由(I)可得,bn=2n﹣1,=n?2n﹣1,考虑利用错位相减求解数列的和即可【解答】解:(Ⅰ)设公差为d,公比为q,那么a2b2=(3+d)q=12①S3+b2=3a2+b2=3(3+d)+q=20②联立①②可得,(3d+7)(d﹣3)=0∵{an}是单调递增的等差数列,d>0.那么d=3,q=2,∴an=3+(n﹣1)×3=3n,bn=2n﹣1…(Ⅱ)bn=2n﹣1,=n?2n﹣1,∴Tn=c1+c2+…+Tn=1?20+2?21+3?22+…+n?2n﹣12Tn=1?21+2?22+…+(n﹣1)?2n﹣1+n?2n…两式相减可得,﹣Tn=1?20+1?21+1?22+…+1?2n﹣1﹣n?2n∴﹣Tn==2n﹣1﹣n?2n∴Tn=(n﹣1)?2n+1…(Ⅰ)求cosA的值;(Ⅱ)假设a=4,b=5,求向量在方向上的投影.【考点】两角和与差的余弦函数;向量数乘的运算及其几何意义;二倍角的正弦;二倍角的余弦;余弦定理.【分析】(Ⅰ)由条件利用三角形的内角和以及两角差的余弦函数,求出A的余弦值,然后求sinA的值;(Ⅱ)利用,b=5,结合正弦定理,求出B的正弦函数,求出B的值,利用余弦定理求出c的大小.【解答】解:(Ⅰ)由可得,可得,即,即,(Ⅱ)由正弦定理,,所以=,由题意可知a>b,即A>B,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=osB=.(1)求证:AE∥平面BFD;(2)求三棱锥A﹣DBE的体积;(3)求二面角D﹣BE﹣A的大小.【考点】二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)连接AC交BD于G,连结GF,那么G为AC的中点,推导出BF⊥CE,FG为△ACE的中位线,由此能证明AE∥平面BFD.(2)推导出BF⊥AE,BC⊥AE,AD⊥平面ABE,从而AE⊥BE,由VA﹣DBE=VD﹣ABE,能求出三棱锥A﹣DBE的体积.(3)由AE⊥BE,AD⊥BE,得到∠DEA是二面角D﹣BE﹣A的平面角,由此能求出二面角D﹣BE﹣A的大小.【解答】证明:(1)连接AC交BD于G,连结GF,∵ABCD是矩形,∴G为AC的中点,…1分由BF⊥平面ACE得:BF⊥CE,由EB=BC知:点F为CE中点,…2分∴FG为△ACE的中位线,∴FG∥AE,…3分∵AE?平面BFD,FG?平面BFD,∴AE∥平面BFD.…4分解:(2)由BF⊥平面ACE得:BF⊥AE,由BC⊥平面ABE及BC∥AD,得:BC⊥AE,AD⊥平面ABE,∵BC∩BF=F,∴AE⊥平面BCE,那么AE⊥BE,…6分∴VA﹣DBE=VD﹣ABE=,即三棱锥A﹣DBE的体积为.…8分(3)由(2)知:AE⊥BE,AD⊥BE,∴BE⊥平面ADE,那么BE⊥DE,∴∠DEA是二面角D﹣BE﹣A的平面角,…10分在Rt△ADE中,DE==4,∴AD=DE,那么∠DEA=30°,∴二面角D﹣BE﹣A的大小为30°.…12分.(Ⅰ)求m的值及f(-)的解析式;(Ⅱ)设∠PRQ=θ,求tanθ.【考点】由y=Asin(ω-+φ)的局部图象确定其解析式;同角三角函数间的基本关系.【分析】(Ⅰ)由可得=,从而解得m的值,由图象可求T,由周期公式可求ω,把p(1,0)代入f(-),结合|φ|≤,即可求得φ的值,把R(0,﹣4)代入f(-)=Asin(-﹣),即可解得A的值,从而可求f(-)的解析式.(Ⅱ)由∠ORP=﹣θ,tan∠ORP=,根据tan(﹣θ)=即可解得tanθ的值.【解答】解:(Ⅰ)∵∠R=,∴OQ=OR,∵Q(m,0),∴R(0,﹣m),…又M为QR的中点,∴M(,﹣),又|PM|=,=,m2﹣2m﹣8=0,m=4,m=﹣2(舍去),…∴R(0,4),Q(4,0),=3,T=6,=6,,…把p(1,0)代入f(-)=Asin(-+φ),As
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年生产型企业产权让渡协议范例版B版
- 2024年度企业员工职业发展规划合作协议3篇
- 2024年物联网技术在农业应用研发合同
- 2024年度地质调查机构特殊技术人员聘用协议2篇
- 《我国环境政策对制造业转型升级的影响研究》
- 《国际中文教师线上汉语教学的能力提升及对策》
- 货物储存保管合同范例
- 《基质金属蛋白酶9基因多态性与COPD易感性的关系研究》
- 2024年商标权合作契约:品牌共用协议3篇
- 2024年农村土地承包权抵押担保贷款合同3篇
- 厨房排油烟不锈钢风管施工方案
- 南京大学在校学生校史知识认知情况调查问卷
- 道德与法治中考备考建议课件
- 财产保险退保申请范文推荐6篇
- 食品工程原理课程设计
- YYT 0325-2022 一次性使用无菌导尿管
- 羊膜在眼科临床中应用课件
- (71)第十五章15.2.3整数指数幂1-负整数指数幂-导学案
- 初步设计方案询价表
- 2022年江苏省环保集团有限公司招聘笔试题库及答案解析
- 《汽车焊接技术》试卷期末理论考试含参考答案一套
评论
0/150
提交评论