版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
公安三中数学组错误!未找到引用源。x∈(﹣∝,﹣4),f(x)g(x)<0则m的取值范围是三、解答题公6小题,共80分。解答应写出文字说明,演算步骤或证明过程。给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。2012高考北京数学真题答案及简析一、选择题题号12345678答案DDBCABBC二、填空题题号91011121314答案21;41;1三、解答题15.解:(1)原函数的定义域为,最小正周期为.(2)原函数的单调递增区间为,16.解:(1),平面,又平面,又,平面(2)如图建系,则,,,∴,设平面法向量为则∴∴∴又∵∴∴∴与平面所成角的大小(3)设线段上存在点,设点坐标为,则则,设平面法向量为则∴∴假设平面与平面垂直则,∴,,∵∴不存在线段上存在点,使平面与平面垂直17.解:(1)由题意可知:(2)由题意可知:(3)由题意可知:,因此有当,,时,有.18.解:(1)由为公共切点可得:,则,,,则,,①又,,,即,代入①式可得:.(2),设则,令,解得:,;,,原函数在单调递增,在单调递减,在上单调递增①若,即时,最大值为;②若,即时,最大值为③若时,即时,最大值为.综上所述:当时,最大值为;当时,最大值为.19.解:(1)原曲线方程可化简得:由题意可得:,解得:(2)由已知直线代入椭圆方程化简得:,,解得:
由韦达定理得:①,,②设,,方程为:,则,,,欲证三点共线,只需证,共线即成立,化简得:将①②代入易知等式成立,则三点共线得证。20.解:(1)由题意可知,,,,∴(2)先用反证法证明:若则,∴同理可知,∴由题目所有数和为即∴与题目条件矛盾∴.易知当时,存在∴的最大值为1(3)的最大值为.首先构造满足的:,.经计算知,中每个元素的绝对值都小于1,所有元素之和为0,且,,.下面证明是最大值.若不然,则存在一个数表,使得.由的定义知的每一列两个数之和的绝对值都不小于,而两个绝对值不超过1的数的和,其绝对值不超过2,故的每一列两个数之和的绝对值都在区间中.由于,故的每一列两个数符号均与列和的符号相同,且绝对值均不小于.设中有列的列和为正,有列的列和为负,由对称性不妨设,则.另外,由对称性不妨设的第一行行和为正,第二行行和为负.考虑的第一行,由前面结论知的第一行有不超过个正数和不少于个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拆迁补偿合同范例写
- 最高额抵押合同范例
- 国外购销合同范例
- 服装公司合伙合同范例
- 保险营销员应聘合同范例
- 咨询服务意向合同范例
- 外聘教师服务合同范例
- 成果交付合同范例
- 单位集体合同范例
- 农村大门转让合同范例
- 疼痛科护士的职业规划与发展空间
- 浙江省杭州市西湖区2023-2024学年四年级上学期期末科学试卷
- 医院人文培训课件
- 刑事辩护与刑事辩护策略
- 农村排水渠道疏浚与治理
- 小学英语新思维朗文2A知识清单总结期末复习资料
- 班级工作计划班级现状分析报告
- 北京版二年级语文上册期末综合测试卷含答案
- 2023年辽宁省工程咨询集团有限责任公司招聘笔试参考题库含答案解析
- 03 写景散文阅读训练-20232024学年七年级语文上册知识(考点)梳理与能力训练(解析)
- 移动应用开发职业生涯规划书
评论
0/150
提交评论