海南省海口市华侨中学高一下学期期末数学试题及答案_第1页
海南省海口市华侨中学高一下学期期末数学试题及答案_第2页
海南省海口市华侨中学高一下学期期末数学试题及答案_第3页
海南省海口市华侨中学高一下学期期末数学试题及答案_第4页
海南省海口市华侨中学高一下学期期末数学试题及答案_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第=page22页,总=sectionpages33页第Page\*MergeFormat1页共NUMPAGES\*MergeFormat23页海南省海口市华侨中学高一下学期期末数学试题及答案一、单选题1.已知为等差数列,,则的值为()A.3 B.2 C. D.1【答案】D【解析】根据等差数列下标和性质,即可求解.【详解】因为为等差数列,故解得.故选:D.【点睛】本题考查等差数列下标和性质,属基础题.2.已知直线的倾斜角为,且过点,则直线的方程为()A. B. C. D.【答案】B【解析】根据倾斜角的正切值为斜率,再根据点斜式写出直线方程,化为一般式即可.【详解】因为直线的倾斜角为,故直线斜率.又直线过点,故由点斜式方程可得整理为一般式可得:.故选:B.【点睛】本题考查直线方程的求解,涉及点斜式,属基础题.3.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则 B.若,则C.若,则 D.若,则【答案】C【解析】对于A、B、D均可能出现,而对于C是正确的.4.设等比数列的前项和为,若则()A. B. C. D.【答案】B【解析】根据等比数列中前项和的“片段和”的性质求解.【详解】由题意得,在等比数列中,成等比数列,即成等比数列,∴,解得.故选B.【点睛】设等比数列的前项和为,则仍成等比数列,即每个项的和仍成等比数列,应用时要注意使用的条件是数列的公比.利用此结论解题可简化运算,提高解题的效率.5.“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】B【解析】试题分析:当时,直线为和直线,斜率之积等于,所以垂直;当两直线垂直时,,解得:或,根据充分条件必要条件概念知,“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的充分不必要条件,故选B.【考点】1、充分条件、必要条件;2、两条直线垂直的关系.6.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.【答案】C【解析】根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.7.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为,若将军从山脚下的点处出发,河岸线所在直线方程为,则“将军饮马”的最短总路程为()A.4 B.5 C. D.【答案】C【解析】求出点A关于直线的对称点,再求解该对称点与B点的距离,即为所求.【详解】根据题意,作图如下:因为点,设其关于直线的对称点为故可得,解得,即故“将军饮马”的最短总路程为.故选:C.【点睛】本题考查点关于直线的对称点的坐标的求解,以及两点之间的距离公式,属基础题.8.已知三条相交于一点的线段两两垂直且在同一平面内,在平面外、平面于,则垂足是的()A.内心 B.外心 C.重心 D.垂心【答案】D【解析】根据题意,结合线线垂直推证线面垂直,以及根据线面垂直推证线线垂直,即可求解。【详解】连接BH,延长BH与AC相交于E,连接AH,延长AH交BC于D,作图如下:因为,故平面PBC,又平面PBC,故;因为平面ABC,平面ABC,故;又平面PAH,平面PAH故平面PAH,又平面PAH,故,即;同理可得:,又BE与AD交于点H,故H点为的垂心.故选:D.【点睛】本题考查线线垂直与线面垂直之间的相互转化,属综合中档题.9.如图,长方体中,,,,分别过,的两个平行截面将长方体分成三个部分,其体积分别记为,,,.若,则截面的面积为()A. B. C. D.【答案】B【解析】【详解】解:由题意知,截面是一个矩形,并且长方体的体积V=6×4×3=72,∵V1:V2:V3=1:4:1,∴V1=VAEA1-DFD1=×72=12,则12=×AE×A1A×AD,解得AE=2,在直角△AEA1中,EA1=故截面的面积是EF×EA1=410.如图所示四棱锥的底面为正方形,平面则下列结论中不正确的是()A. B.平面C.直线与平面所成的角等于30° D.SA与平面SBD所成的角等于SC与平面SBD所成的角【答案】C【解析】根据空间中垂直关系的判定和性质,平行关系的判定和性质,以及线面角的相关知识,对选项进行逐一判断即可.【详解】对A:因为底面ABCD为正方形,故ACBD,又SD底面ABCD,AC平面ABCD,故SDAC,又BD平面SBD,SD平面SBD,故AC平面SBD,又SB平面SBD,故AC.故A正确;对B:因为底面ABCD为正方形,故AB//CD,又CD平面SCD,故AB//平面SCD.故B正确.对C:由A中推导可知AC平面SBD,故取AC与BD交点为O,连接SO,如图所示:则即为所求线面角,但该三角形中边长关系不确定,故线面角的大小不定,故C错误;对D:由AC平面SBD,故取AC与BD交点为O,连接SO,则即为SA和SC与平面SBD所成的角,因为,故,故D正确.综上所述,不正确的是C.故选:C.【点睛】本题综合考查线面垂直的性质和判定,线面平行的判定,线面角的求解,属综合基础题.11.如图,在中,,点在边上,且,则等于()A. B. C. D.【答案】C【解析】在中,由余弦定理求得,在中,利用正弦定理求得BD,则可得CD.【详解】在中,由余弦定理可得.又,故为直角三角形,故.因为,且为锐角,故.由利用正弦定理可得,代值可得,故.故选:C.【点睛】本题考查利用正弦定理以及余弦定理解三角形,属于综合基础题.12.设数列满足,且,则数列中的最大项为()A. B. C. D.【答案】A【解析】利用累加法求得的通项公式,再根据的单调性求得最大项.【详解】因为故故则,其最大项是的最小项的倒数,又,当且仅当或时,取得最小值7.故得最大项为.故选:A.【点睛】本题考查由累加法求数列的通项公式,以及数列的单调性,属综合基础题.二、填空题13.点到直线的距离为________.【答案】3【解析】根据点到直线的距离公式,代值求解即可.【详解】根据点到直线的距离公式,点到直线的距离为.故答案为:3.【点睛】本题考查点到直线的距离公式,属基础题.14.若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为.【答案】【解析】试题分析:设圆柱的底面半径为,高为,底面积为,体积为,则有,故底面面积,故圆柱的体积.【考点】圆柱的体积15.如图,正方体ABCD﹣A1B1C1D1的棱长为1,M为B1C1中点,连接A1B,D1M,则异面直线A1B和D1M所成角的余弦值为________________________.【答案】.【解析】连接、,取的中点,连接,可知,且是以为腰的等腰三角形,然后利用锐角三角函数可求出的值作为所求的答案.【详解】如下图所示:连接、,取的中点,连接,在正方体中,,则四边形为平行四边形,所以,则异面直线和所成的角为或其补角,易知,由勾股定理可得,,为的中点,则,在中,,因此,异面直线和所成角的余弦值为,故答案为.【点睛】本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.16.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).【答案】①②④【解析】根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.三、解答题17.已知的三个顶点为.(1)求过点且平行于的直线方程;(2)求过点且与、距离相等的直线方程.【答案】(1);(2).【解析】(1)先由两点写出直线BC的方程,再根据点斜式写出目标直线的方程;(2)过点B且与直线AC平行的直线即为所求,注意垂直平分线不过点B,故舍去.【详解】(1)由、两点的坐标可得,因为待求直线与直线BC平行,故其斜率为由点斜式方程可得目标直线方程为整理得.(2)由、点的坐标可知,其中点坐标为又直线AC没有斜率,故其垂直平分线为,此直线不经过点B,故垂直平分线舍去;则满足题意的直线为与直线AC平行的直线,即.综上所述,满足题意的直线方程为.【点睛】本题考查直线方程的求解,属基础题.18.已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.【答案】(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.试题解析:(Ⅰ)设等差数列{an}的公差为d,由题意得d===3.∴an=a1+(n﹣1)d=3n设等比数列{bn﹣an}的公比为q,则q3===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=3n+2n﹣1(Ⅱ)由(Ⅰ)知bn=3n+2n﹣1,∵数列{3n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{bn}的前n项和为;【考点】1.等差数列性质的综合应用;2.等比数列性质的综合应用;3.数列求和.19.如图,在三棱锥中,平面平面为等边三角形,,且,分别为的中点.(1)求证:平面平面;(2)求三棱锥的体积.【答案】(1)证明见详解;(2).【解析】(1)由面面垂直可得线面垂直,再推证面面垂直即可;(2)根据垂直于平面AMO,即可由棱锥的体积公式直接求得体积.【详解】(1)在中,因为,且O为AB中点,故AB,因为平面VAB平面ABC,且平面VAB平面ABC,因为CO平面ABC,又AB,故CO平面VAB;又CO平面MOC,故平面MOC平面VAB.即证.(2)由(1)可知CO平面VAB,故三棱锥底面MAO上的高为,又因为分别为的中点,故故.故三棱锥的体积为.【点睛】本题考查由线面垂直推证面面垂直,以及三棱锥体积的求解,属基础题.20.在中,角,,所对的边分别是,,,且.(1)求角;(2)若,求.【答案】(1);(2).【解析】(1)利用正弦定理化简即得;(2)由正弦定理得,再结合余弦定理可得.【详解】解:(1)由正弦定理得:,又,,得.(2)由正弦定理得:,又由余弦定理:,代入,可得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.已知为数列的前项和,.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】(1)由即可求得通项公式;(2)由(1)中所求的,以及,可得,再用裂项求和求解前项和即可.【详解】(1)当时,整理得,即数列是以首项为,公比为2的等比数列,故(2)由(1)得,,故=故数列的前项和.【点睛】本题考查由和之间的关系求解数列的通项公式,以及用裂项求和求解前项和,属数列综合基础题.22.如图,在正方形中,点是的中点,点是的中点,将分别沿折起,使两点重合于,连接.(1)求证:;(2)点是上一点,若平面,则为何值?并说明理由.(3)若,求二面角的余弦值.【答案】(1)证明见详解;(2),理由见详解;(3).【解析】(1)通过证明EF平面PBD,即可证明;(2)通过线面平行,将问题转化为线线平行,在平面图形中根据线段比例进而求解;(3)根据(1)(2)所得,找到二面角的平面角,然后再进行求解.【详解】(1)证明:因为四边形ABCD为正方形,故DAAE,DC,即折叠后的DP又因为平面PEF,平面PEF,故DP平面PEF,又平面PEF,故.在正方形ABCD中,容易知EF,又平面PBD,平面PBD,故EF平面PBD,又平面PBD故,即证.(2)连接BD交EF于O,连接OM,作图如下因为//平面,平面PBD,平面PBD平面=MO故//MO在中,由,以及E、F分别是正方形ABCD两边的中点,故可得即为所求.(3)过M作MH垂直于BD,垂足为H,连接OP,作图如下:由(1)可知:EF平面PBD,因为MH平面PBD,故EF又,平面EDF,BD平面EDF,故MH平面EDF,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论