版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常用质量管理方法、工具主要内容nnnnnnnn第五部分数据与推断工序批次样本数据推断统计在统计方法中的地位统计方法描述统计推断统计参数估计假设检验统计推断的过程总体样本统计量样本例如:样本均值、比例、方差统计基础知识一、样本与统计量二、常用统计量参数估计一、点估计(一)点估计的概念(二)矩法估计(三)点估计优劣的评选标准1、无偏性2、有效性3、正态总体参数的无偏估计二、区间估计(一)区间估计的概念[定义及其作用][定义]参数估计是从样本出发,针对不同的问题,人为构造适当的统计量,根据这些统计量的值,预测总体参数值。参数估计包括点估计和区间估计,点估计是根据样本结果,估计总体参数值的大小;而区间估计,是以一定的概率估计总体参数值的范围参数估计基本方法一.
点估计二.
点估计的优良性准则区间估计参数估计的方法估
计
方
法点
估
计区间估计矩估计法顺序统计量法最大似然法最小二乘法被估计的总体参数用于估计的样本统计量总体参数符号表示点
估
计点估计(概念要点)nnnn估计量(概念要点)估计量的优良性准则(无偏性)n
无偏性:抽样分布的均值等于总体均值P(X)无偏有偏AC估计量的优良性准则----有效性有效性:如果与其他任何无偏估计量相比,样本均值更接近总体均值,我们就称样本均值是个更有效的估计量。均值的抽样分布P(X)B中位数的抽样分布A估计量的优良性准则-----一致性一致性:随样本容量的增加,样本均值与总体均值间的差异缩小。较大的样本容量P(X)B较小的样本容量A区间估计(概念要点)置信区间估计(内容)置
信
区
间均
值比
例方
差
已知
未知落在总体均值某一区间内的样本X=
?Z
x
-2.58
x
-1.96
x
+2.58x
+1.96x95%
的样本99%
的样本置信水平1.2.3.4.5.区间与置信水平均值的抽样分布a/2a/21
-
a影响区间宽度的因素总体均值和总体比例的区间估计一.总体均值的区间估计二.总体比例的区间估计样本容量的确定总体均值的区间估计(2
已知)总体均值的置信区间(2
已知)3.
总体均值
在1-置信水平下的置信区间为:总体均值的区间估计(正态总体:实例)【例】某种零件解:已知X
~N(
,
0.152)
,
xn=9,
1-
=
0.95,Z/2=1.96长度服从正态分布,从该批产品中随机抽取9件,测得其平均长度为
21.4
mm
。已知总体标准差
=0.15mm,试建立该种零件平均长度的置信区间,给定置信水平为0.95。总体均值的置信区间为:我们可以95%的概率保证该种零件的平均长度在21.302~21.498mm之间总体均值的区间估计(非正态总体:实例)解:已知
x=26,
=0.15,n=9,
1-
=【例】某大学从该0.95,Z/2=1.96校学生中随机抽取1000人,调查到他们平均每天参加体育锻炼的时间为26分钟。试以95%的置信水平估计该大学全体学生平均每天参加体育锻炼的时间(已知总体方差为36小时)。我们可以95%的概率保证平均每天参加锻炼的时间在
24.824
~
27.176分钟之间总体均值的区间估计(2
未知)总体均值的置信区间(2
未知)3.
总体均值
在1-置信水平下的置信区间为:总体均值的区间估计(实例)解:已知X~N(,2),x=50,
s=8,n=25,
1-
=
0.95
,t/2=2.0639。【例】从一个正态总体中抽取一个随机样本,n
=
25
,其均值`x
=
50,标准差
s
=8。
建立总体均值m
的95%的置信区间。我们可以95%的概率保证总体均值在46.69~53.30之间总体比例的区间估计总体比例的置信区间3.
总体比例P
的置信区间为:总体比例的置信区间(实例)p【例】某企业在一项
解:已知
=200
,
=
0.7
,
n
p=
140
>
5
,关于职工流动原因的研究中,从该企业前职工的总体中随机选取了200人组成一个样本。在对其进行访问时,有140人说他们离开该企业是由于同管理人员不能融洽相处。试对由于这种原因而离开该企业的人员的真正比例构造95%的置信区间。pn(1-
)=60>5,=0.95,Z
=1.96/2我们可以95%的概率保证该企业职工由于同管理人员不能融洽相处而离开的比例在63.6%~76.4%之间样本容量的确定估计总体均值时样本容量的确定其中:2.
样本容量n与总体方差2、允许误差、可靠性系数Z之间的关系为3.
与总体方差成正比4.
与允许误差成反比样本容量的确定(实例)【例】一家广告公司想
解
:
已知
2=1800000
,估计某类商店去年所花Z/2=1.96,=500的平均广告费用有多少。经验表明,总体方差约应抽取的样本容量为:为1800000。如置信度取95%,并要使估计处在总体平均值附近500元的范围内,这家广告公司应抽多大的样本?估计总体比例时样本容量的确定其中:样本容量的确定(实例)解:
已知=0.05,=0.05,Z
=1.96,当n【例】一家市
/2p未知时用最大方差0.25代替场调研公司想估计某地区有彩色电视机的家庭所占的比例。该公司希望对比例p的估计误差不超过0.05,要求的可靠程度为95%,应抽多大容量的样本(没有可利用的p估计值)。应抽取的样本容量为:两个总体均值及两个总体比例之差估计两个总体均值之差的估计两个样本均值之差的抽样分布总体2总体1抽取简单随机样样本容量n1抽取简单随机样样本容量n2计算每一对样本的X
-X计算X112计算X2所有可能样本的X
-X12m
m两个总体均值之差的估计(1、
2已知)3.
两个总体均值之差1-2在1-
置信水平下的置信区间为:两个总体均值之差的估计(实例)n【例】一个银行负责人想知道储户存入两家银行的钱数。他从两家银行各抽取了一个由25个储户组成的随机样本,样本均值如下:银行A:4500元;银行B:3250元。设已知两个总体服从方差分别为A2=2500和A
B2=3600
的正态分布。试求
A-
B的区间估计:Bn(1)置信度为95%;n(2)置信度为99%。两个总体均值之差的估计(计算结果)解:已知xA~N(
A,2500)xB~N(B,3600)xA=4500,xB=3250,A2
=2500B2
=3600nA=
nB
=25两个总体均值之差的估计(1、
2未知,但相等)1.2.3.4.5.3.
估计量x1-x2的标准差为两个总体均值之差的估计(1、
2未知,但相等)
两个总体均值之差1-2在1-
置信水平下的置信区间为:两个总体均值之差的估计(实例)【例】为比较两位银行职员为新顾客办理个人结算账目的平均时间长度,分别给两位职员随机安排了10位顾客,并记录下了为每位顾客办理账单所需的时间(单位:分钟),相应的样本均值和方差分别为:x1=22.2,1s12=16.63,x2=28.5,s22=18.92。假定每位职员办理账单所需时间均服从正态分布,且方差相等。试求两位职员办理账单的服务时间之差的95%的区间估计。2两个总体均值之差的估计2
s1s
2=18.92(计算结果)2解:已知x1~N(
1,2)x2
~N(2,2)x1=22.2,1-
2置信度为95%的置信区间为x2=28.5,s12=16.63s22=18.92n1=
n2=1012=
12两个总体均值之差的估计(1、
2未知,且不相等)
假定条件两个总体都服从正态分布12、12未知12
12两个总体均值之差的估计(1、
2未知,且不相等)两个总体均值之差1-2在1-
置信水平下的置信区间为:两个总体均值之差的估计(续前例)【例】为比较两位银行职员为新顾客办理个人结算账目的平均时间长度,分别给两位职员随机安排了10位顾客,并记录下了为每位顾客办理账单所需的时间(单位:分钟),相应的样本均值和方差分别为:x1=22.2,1s12=16.63,x2=28.5,s22=18.92。假定每位职员办理账单所需时间均服从正态分布,但方差不相等。试求两位职员办理账单的服务时间之差的95%的区间估计。2两个总体均值之差的估计(计算结果)解:已知x1~N(
1,2)x2
~N(2,2)x1=22.2,1-
2置信度为95%的置信区间为x2=28.5,s12=16.63s22=18.92n1=
n2=101212两个总体比例之差的估计两个总体比例之差的区间估计nnnnn两个总体比例之差的估计(实例)【例】某饮料公司对其所做的报纸广告在两个城市的效果进行了比较,它们从两个城市中分别随机地调查了1000个成年人,其中看过广告的比例分别为p1=^0.18和p^2=0.14。试求两城市成年人绿色健康饮品中看过广告的比例之差的95%的置信区间。两个总体比例之差的估计(计算结果)解:已知p
=0.18,
p
=0.14,1-=0.95,
n
=n
=10001212p1-p2置信度为95%的置信区间为:--0.18
(1
0.18
)
0
.14
(1
0
.14
)()-+0
.18
0
.14
1
.9610001000±()=0
.0079
,0
.0721正态方差及两正态总体方差比的估计一.
正态总体方差的区间估计二.
两个正态总体方差比的区间估计正态总体方差的区间估计正态总体方差的区间估计(要点)4.
总体方差在1-置信水平下的置信区间为:正态总体方差的区间估计【例】对某种金属的10个样品组成的一个随机样本作抗拉强度试验。从实验数据算出的方差为4。试求2的95%的置信区间。正态总体方差的区间估计(计算结果)解:已知2置信度为95%的置信区间为n=10s2
=41-
=95%两个正态总体方差比的区间估计两个正态总体方差比的区间估计(要点)两个正态总体方差比的区间估计(实例)【例】用某一特定工序生产的一批化工产品中的杂质含量的变异依赖于操作过程中处理的时间长度。某生产商拥有两条生产线,为了降低产品中杂质平均数量的同时降低杂质的变异,对两条生产线进行了很小的调整,研究这种调整是否确能达到目的。为此从两条生产线生产的两批产品中各随机抽取了25个样品,它们的均值和方差为:x1=3.2,S12=1.04x2=3.0,
S22=1.04试确定两总体方差比12/12的90%的置信区间。两个正态总体方差比的区间估计(计算结果)
12/
22
置信度为
90%
的置信区间为:解:已知x1=3.2,S12=1.04x2=3.0,S22=1.04F1-/2(24,24)=F0.95=1.98F/2(24,24)=F0.05=0.51假设检验一、基本思想与基本步骤(一)假设检验问题(二)假设检验的基本步骤1、建立假设2、选择检验统计量,给出拒绝的形式3、给出显著性水平а,常取а=0.054、定出临界值c,写出拒绝域W5、判断二、正态总体参数的假设检验(一)正态均值µ的假设检验(σ已知)[定义及其作用][定义]假设检验是根据实际问题的要求,提出一个关于随机变量(或质量特性值)的一种论断,然后根据样本的有关信息,以一定的概率对这个论断的真伪进行判断。[假设检验的应用场合及步骤]假设检验可用于各种场合,其思路是根据实际问题的要求提出一个关于质量特性值的论断(称为原假设),然后,根据样本的有关信息,对原假设的真伪进行判断。[假设检验的应用产和及步骤]在假设检验里,要提出原假设,同时根据实际问题提出原假设的对立面(称为备择假设),原假设用H0表示,备择假设用H1表示。第一类错误:原假设H0本来正确,但我们却拒绝了H0(认为H0是不正确的),这种错误发生的概率通常以表示;第二类错误:原假设H0本来不正确,但我们却接受了H0(认为H0是正确的),这种错误发生的概率通常用表示。[假设检验的应用产和及步骤]在实际问题中,一般总是控制犯第一种错误的概率
,
的大小通常取为0.01,0.05等数值,而不考虑犯第二类错误的概率
,并将称为假设检验的显著性水平。[假设检验的应用场合及步骤][假设检验的步骤]分析问题,提出H0和H1确定显著性水平和统计量、拒绝域计算统计量[假设检验的应用场合及步骤][总体平均值的检验]适用场合检验规则总体平均值的检验规则如表17-1正态总体均值检验表xx[假设检验的应用场合及步骤][总体平均值的检验]检验步骤[例1]
某厂生产的不锈钢产品的抗拉强度以前服从均值为0=72.0kg/mm2标准差为0=2.0kg/mm2的正态分布,生产过程中,对机器进行了调整。为确定机器调整对产品质量特性的影响,随机抽样10个,测其抗拉强度为76.2,78.3,76.4,74.7,72.6,78.4,75.7,70.2,73.3,74.2(单位:kg/mm2)。问机器调整后,产品的抗拉强度是否有了变化?(机器调整前后,总体方差不变)[解]
总体标准差为0=2.0kg/mm2(已知),以前总体均值为0=72.0kg/mm2。第一步,假设H0:0=72.0,H1:≠72.0;=0.05第二步,计算统计量[解]第三步,检验=0.05,u1-/2=u1-0.025=u0.075=1.96,u0≥u1-/2,所以拒绝H0。第四步,结论机器调整后,有95%的“把握”认为,产品的抗拉强度确实发生了变化。案例演示机器调整后,有95%的“把握”认为,不锈钢的抗拉强度确实发生了变化[假设检验的应用场合及步骤][总体方差的检验]适用场合检验规则从数学形式上讨论,对方差的检验可以有[假设检验的应用场合及步骤][总体方差的检验]检验步骤[例]
工厂为了降低成本,想变更零件的材质。用原来材质生产的零件外径标准差是0.38mm,材质变更后,随机抽样10个零件,测其直径为:34.52,35.08,34.88,35.71,33.98,34.96,35.17,35.26,34.77,35.47。问零件外径方差是否有所变化?[解]
总体均值为未知,以前总体标准差为0=0.38mm第一步,假设第二步,计算统计量[解]第三步,检验不能拒绝H0,也就是接受H0。第四步,结论改变了材质后,零件外径的方差没有显著变大(显著性水平0.05),也即,有95%的“把握”认为零件外径的方差没有变案例演示化,和现有的材质一致。材质改变后,有95%的“把握”认为,零件外径的方差没有发生变化,和现有的材质一致[参数估计的应用场合及步骤]参数估计包括点估计和区间估计。点估计的方法很多,我们通常采用数字特征法,也就是以样本的平均值来估计总体的平均值,以样本的方差来估计总体的方差。在一定的置信度下,估计参数的范围叫做置信区间。[参数估计的应用场合及步骤][总体平均值]点估计一个正态总体平均值的点估计为,式中
表示总体均值的估计值,其上面的“
”符号表示参数的估计值(下同),
表示样本的平均值。[参数估计的应用场合及步骤][总体平均值]区间估计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度化妆品销售与市场推广协议2篇
- 金融科技产品服务项目合同
- 2024明星艺人形象代言独家合作协议书3篇
- 2024年综合性安保服务协议版B版
- 二零二五年度分公司股权调整及分配执行合同6篇
- 网络购物平台合作运营协议
- 2024版利益分配协议书
- 公开招聘合同制人员报名表
- 数字身份认证与管理服务合同
- 数控电火花线切割机床安全操作规程
- 国家电网公司招聘高校毕业生应聘登记表
- 内科护理学重点总结
- 创新思维训练学习通超星期末考试答案章节答案2024年
- 2019年海南省公务员考试申论真题(甲类)
- 事业部制改革方案
- 定向罗盘项目可行性实施报告
- 学术基本要素:专业论文写作学习通超星期末考试答案章节答案2024年
- 2024年《中华人民共和国监察法》知识测试题库及答案
- 医院医用计量器具管理制度
- CSR报告与可持续发展
- 2025届高考语文复习:散文阅读 课件
评论
0/150
提交评论