版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
#由于匀速直线运动的速度不随时间而改变,所以它的速度图象是平行时间轴的直线。(六)、变速直线运动、平均速度、瞬时速度变速直线运动,强调物体沿直线运动,与匀速比相等时间内位移不相等。即没有恒定的速度,要想描述其运动快慢程度,只有粗略的按匀速运动处理,把在变速直线运动中,运动物体的位移和所用时间的比值,叫做这段时间内的或通过这段位移的平均速度。表示为如果一段位移S内,分作几段位移S]、s2、S3。而在每一段位移内可视为匀速,其速度分别为V]、v2、v3。求这一段位移S内的平均速度?依定义式并会用平均速度去计算位移和时间。瞬时速度:描述的是变速运动物体在某一时刻(或某一位置)的速度。它能最精确地描述变速运动的质点在某位置运动快慢和运动方向,它是把平均速度的时间无限缩短到时刻。它的方向总是运动质点运动轨迹的切线方向。小结]、知道机械运动、平动、转动;参照物的概念;质点的概念以及把物体简化成质点的条件。匀速、变速直线运动的特点。2、理解静止和运动的相对性;位移的概念会用图象法表示位移矢量,理解速度的定义、物理意义速度是矢量及速率的概念,理解平均速度,即时速度的物理意义。了解即时速度与平均速度的区别和联系。3、掌握位移和路程的区别和联系,并能在具体问题中正确识别位移和路程;掌握速度的概念,速度的单位和换算;掌握匀速直线运动的规律,能熟练运用匀速直线运动的速度公式和位移公式求解问题。会画匀速直线运动的位移图象和速度图象,会从图象判断物体的运动状态;掌握平均速度的定义,并能运用公式求变速直线运动的平均速度,从而计算位移和时间。必须再次强调以下三点:]、位移和路程不同位移是表示质点位置变化的物理量,可以用由初位置到末位置的有向线段来表示,位移既有大小,又有方向,是矢量。路程表示质点在一定时间内运动轨迹的长度,只有大小,没有方向,是标度。只有当物体运动的轨迹是一条直线,运动方向不变时,路程与位移的大小相等,其他情况下,路程的数值都大于位移的数值。2、时刻和时间不同时间反映一段时的间隔,如“一节课的时间是45分钟”“一秒内”“第二秒”等都表示时间。而时刻反映的是时间里的某一点,如上第一节课的时刻是“八点十分”“一秒末”“第三秒初”等表示的是时刻。时间与时刻都是标量。对于运动物体,时刻与位置对应,时间与位移对应。3、速度和速率不同速度是描述物体位置变化快慢的物理量,在匀速直线运动中速度等于位移跟时间的比值,是矢量,方向与位移方向一致。速率是速度的大小,是标量。在匀速直线运动中,速度与速率数值相等,仅是矢量和标量的区别。在变速运动中,物体位移与时间的比是平均速度;路程与时间的比是平均速率。如果运动物体轨迹是曲线,或做往返直线运动,由于路程的值大于位移的值,所以平均速度和平均速率不仅有矢量和标量的区别,数值上也不相等。如汽车环城跑了一圈又回到初始位置,位移是零,平均速度是零,而路程不为零,平均速率不为零。在变速运动中,当时间趋于零时,在极短时间内的平均速度,叫该时刻的即时速度。即时速率与即时速度的大小相等,只是标量与矢量的区别。匀变速直线运动规律1、匀变速直线运动、加速度本节开始学习匀变速直线运动及其规律,能够正确理解加速度是学好匀变速直线运动的基础和关键,因此学习中要特别注意对加速度概念的深入理解。(1)沿直线运动的物体,如果在任何相等的时间内物体运动速度的变化都相等,物质的运动叫匀变速直线运动。匀变速直线运动是变速运动中最基本、最简单的一种,应该指示:常见的许多变速运动实际上并不是匀变速运动,可是不少变速运动很接近于匀变速运动,可以当作匀速运动处理,所以匀变速直线运动也是一种理想化模型。(2)加速度是指描述物质速度变化快慢而引入的一个重要物理量,对于作匀变速直线运动的物体,速度的变化量与所用时间的比值,叫做匀变速直线运动的加速度,即:。加速度是矢量,加速度的方向与速度变化的方向是相同的,对于作直线运动的物体,在确定运动为正方向的条件下,可以用正负号表示加速度的方向,如vt>v0,a为正,如vt<v0,a为负。前者为加速,后者为减速。依据匀变速直线运动的定义可知,作匀变速直线运动物体的加速度是恒定不变的。即a=恒量。(3)在学习加速度的概念时,要正确区分速度、速度变化量及速度变化率。其中速度v是反映物体运动快慢的物理量。而速度变化量△v=v2—V],是反映物体速度变化大小和方向的物理量。速度变化量△v也是矢量,在加速直线运动中,速度变化量的方向与物体速度方向相同,在减速直线运动中,速度变化量的方向与物体速度方向相反。加速度就是速度变化率,它反映了物体运动速度随时间变化的快慢。匀变速直线运动中,物体的加速度在数值上等于单位时间内物体运动速度的变化量。所以物体运动的速度、速度变化量及加速度都是矢量,但它们确实从不同方面反映了物体运动情况。例如:关于速度和加速度的关系,以下说法正确的是:物体的加速度为零时,其加速度必为零物体的加速度为零时,其运动速度不一定为零运动中物体速度变化越大,则其加速度也越大物体的加速度越小,则物体速度变化也越慢要知道物体运动的加速度与速度之间并没有直接的关系。物体的速度为零时加速度可以不为零,如拿在手中的物体在松开手释放它的瞬时就是这种情况;物体的加速度为零时,其速度可以不为零,作匀速直线运动的物体就具有这个特点。加速度是反映速度变化快慢的物理量,由加速度的定义可知,速度的变化量=a・t,即速度变化量与加速度a及时间t两个因素有关。因此加速度小的物体其速度变化不一定小,而加速度的物体其速度变化不一定就大。由以上分析可知正确的是B选项。应该注意的是:加速度的大小描述的是速度变化快慢,而不是速度变化的多少,即:。如果只知道速度变化的多少,而不知道是在多长时间内发生的这一变化。我们就无法判断它的速度变化是快还是慢。比如速度变化很大的物体,如果发生这一变化所用的时间很长,加速度可以很小,相反,速度变化虽然较小,但是发生这一变化所用的时间确实很短,加速度都可以很大。2、匀变速直线运动的速度及速度时间图象可由,即匀变速直线运动的速度公式,如知道t=0时初速度v0和加速度大小和方向就可知道任意时刻的速度。应指示,v0=0时,vt=at(匀加),若,匀加速直线运动,匀减速直线运动vt=v—at,这里a是取绝对值代入公式即可求出匀变速直线运动的速度。匀变速直线运动速度——时间图象,是高中学习以来第二次用图象来描述物体的运动规律,内匀变速直线运动速度公式:vt=v0+at,从数学角度可知匕是时间t的t0t一次函数,所以匀变速直线运动的速度一—时间图象是一条直线[即当已知:v0=0(或)a的大小给出不同时间求出对应的vt就可画出。]从如右图图象可知:各图线的物理意义。图象中直线①过原点直线是v0=0,匀加速直线运动,图象中直线②是,匀加速直线运动。图象③是匀减速直线运动。速度图象中图线的斜率等于物体的加速度,以直线②分析,tg,斜率为正值,表示加速度为正,由直线③可知=卩2—V]<0,斜率为负值,表示a为负,由此可知在同一坐标平面上,斜率的绝对值越大。回忆在匀速直线运动的位移图象中其直线的斜率是速度绝对值,通过对比,加深对不同性质运动的理解做到温故知新。当然还可以从图象中确定任意时刻的即时速度,也可以求出达到某速度所需的时间。至于匀变速直线运动的位移,平均速度以及时间一半时的即时速度在图象上的体现下边接着讲述。3、匀变速直线运动的位移由匀速运动的位移S=vt,可以用速度图线和横轴之间的面积求出来。如右图中AP为一个匀变速运动物体的速度图线,为求得在t时间内的位移,可将时间轴划分为许多很小的时间间隔,设想物体在每一时间间隔内都做匀速运动,虽然每一段时间间隔内的速度值是不同的,但每一段时间间隔t.与其对应的平均速度v.的乘积S.=v.t.近似iiiii等于这段时间间隔内匀变速直线运动的位移,因为当时间分隔足够小时,间隔的阶梯线就趋近于物体的速度线AP阶梯线与横轴间的面积,也就更趋近于速度图线与横轴的面积,这样我们可得出结论:匀变速直线运动的位移可以用速度图线和横轴之间的面积来表示,此结论不仅对匀变速运动,对一般变速运动也还是适用的。由此可知:所求匀变直线运动物体在时间t内的位移如下图中APQ梯形的面积“S”=长方形ADQO的面积+三角形APO的面积,所以位移,当v0=0时,位移,由此还可知梯形的中位线BC就是时间一半(中间时刻)时的即时速度,也是(首末速度的平均),也是这段时间的平均速度,因此均变速直线运动的位移还可表示为:,此套公式在解匀变速直线运动问题中有时更加方便简捷。还应指出,在匀变速直线运动中,用如上所述的速度图象有时比上述的代数式还更加方便简捷(后边有例题说明)。匀变速直线运动小结:1、概念:加速度符号:a;定义式:;单位:米每二次方秒;单位的符号:m/s2;图象中直线斜率:tg=a2、规律:A、代数式速度公式:位移公式:速度位移公式:,此公式不是独立的是以上两公式消去t而得到的,所以在题目中不涉及运动时间时,用此公式方便。位移公式:。由公式还可推导匀变速直线运动中位移中点的即时速度(如右图)B图像:速度图象(对应上述三个公式都能有所体现)。S位移梯形面积(即速度图线与横轴之间的面积)位移自由落体运动竖直上抛运动落体运动和抛体运动是存在于自然界很普遍的一种运动形式。自由落体运动和竖直上抛运动是在各条件严格约束下理想化的运动。下落的雨滴、飞落的树叶没有两个雨滴和两片树叶的运动情况是完全相同的,这是因为它们在下落的过程中受到周围空气扰动的结果,但是,下落的雨滴、飞落的树叶本质上具有相同的共性。把各次要的因素去掉抽象出本质的东西,这就是科学。记得一位诺贝尔物理学奖获得者曾经说过“只有从实际抽象出来的才是科学的,只有科学的才是最联系实际的”。掌握内容:第一要认识什么是自由落体运动和竖直上抛运动。因为自由落体运动和竖直上抛运动都属于匀变速直线运动,因此,第二要掌握自由落体运动和竖直上抛运动的特点和规律,并能把匀变速直线运动的规律迁移到解决自由落体运动和竖直上抛运动的问题中。知识要点:一、自由落体运动。1、什么是自由落体运动。任何一个物体在重力作用下下落时都会受到空气阻力的作用,从而使运动情况变的复杂。若想办法排除空气阻力的影响(如:改变物体形状和大小,也可以把下落的物体置于真空的环境之中),让物体下落时之受重力的作用,那么物体的下落运动就是自由落体运动。物体只在重力作用下,从静止开始下落的运动叫做自由落体运动。2、自由落体运动的特点。从自由落体运动的定义出发,显然自由落体运动是初速度为零的直线运动;因为下落物体只受重力的作用,而对于每一个物体它所受的重力在地面附近是恒定不变的,因此它在下落过程中的加速度也是保持恒定的。而且,对不同的物体在同一个地点下落时的加速度也是相同的。关于这一点各种实验都可以证明,如课本上介绍的“牛顿管实验”以及同学们会做的打点计时器的实验等。综上所述,自由落体运动是初速度为零的竖直向下的匀加速直线运动。二、自由落体加速度。1、在同一地点,一切物体在自由落体运动中加速度都相同。这个加速度叫自由落体加速度。因为这个加速度是在重力作用下产生的,所以自由落体加速度也叫做重力加速度。通常不用“a”表示,而用符号“g”来表示自由落体加速度。2、重力加速度的大小和方向。同学们可以参看课本或其他读物就会发现在不同的地点自由落体加速度一般是不一样的。如:广州的自由落体加速度是9.788m/s2,杭州是9.793m/s2,上海是9.794m/s2,华盛顿是9.801m/s2,北京是9.80122m/s2,巴黎是9.809m/s2,莫斯科是9.816m/s2。即使在同一位置在不同的高度加速度的值也是不一样的。如在北京海拔4km时自由落体加速度是9.789m/s2,海拔8km时是9.777m/s2,海拔12km时是9.765m/s2,海拔16km时是9.752m/s2,海拔20km时是9.740m/s2。尽管在地球上不同的地点和不同的高度自由落体加速度的值一般都不相同,但从以上数据不难看出在精度要求不高的情况下可以近似地认为在地面附近(不管什么地点和有限的高度内)的自由落体加速度的值为:g=9・765m/s2。在粗略的计算中有时也可以认为重力加速度g=10m/s2o重力加速度的方向总是竖直向下的。三、自由落体运动的规律。既然自由落体运动是初速度为零的竖直向下的匀加速直线运动。那么,匀变速直线运动的规律在自由落体运动中都是适用的。匀变速
(1)(1)2)3)4)v=v+att01s=vt+at2
02
v2=v2+2as
t0v+vS=—0T2对于自由落体运动来说:初速度v0=0,加速度a=g。因为落体
运动都在竖直方向运动,所以物体的位移S改做高度h表示。那么,5)5)v=gt7)7)v2=2ght8)1
h=2vt8)四、竖直下抛运动。1、物体只在重力作用下,初速度竖直向下的抛体运动叫竖直下抛运动。一切抛体运动并不是指抛的过程,而是指被抛的物体出手以后的运动。因此,一切抛体运动都是只在重力作用下的运动。不同的抛体运动(如:平抛运动、斜抛运动、竖直上抛运动以及下面将要讲到的竖直上抛运动)的区别仅在于初速度的方向。初速度沿水平方向的是平抛运动,初速度向下的是竖直下抛运动……。2、既然一切抛体运动都是在恒定重力作用下的运动,那么它也就
具有恒定的加速度,属于匀变速运动。因为重力的方向是向下的,加速度的方向也是向下的,对于竖直下抛运动加速度的方向与物体初速度的方向相同。所以,竖直下抛运动是沿竖直方向的匀加速直线运动。且加速度为g(=9.8m/s2)。3、竖直下抛运动的规律:将竖直下抛运动与自由落体运动相比,区别之处仅在于竖直下抛
运动有初速度(V0)。既然自由落体运动满足以下规律:V=gtt1h=2gt2v2=2ght1
h=2vtt(9(9)10)(1112)V=V+gtt01h=vt+gt202V2=v2+2ght01h=2(v0+vt)t五、竖直上抛运动。1、结合上面我们对竖直下抛运动的分析和研究,不难想象竖直上抛运动可以表述为:物体只在重力作用下,初速度竖直向上的抛体运动叫竖直上抛运动。自然它也是匀变速直线运动。这里应该提醒大家的是竖直上抛运动的加速度与竖直下抛运动的加速度(包括大小和方向)是一样的,是同一个加速度。由于初速度的方向向上,因此人们常说竖直上抛运动的加速度与运动的初速度是相反的(不是因为加速度反向,而是初速度的方向发生了改变而引起的)。那么,竖直上抛运动是沿竖直方向的匀减速直线运动。它的加速度加速度为g(=9.8m/s2)。2、竖直上抛运动的规律。选定竖直向上的初速度方向为正方向,那么,加速度g的方向应为负。考虑到重力加速度g是一个特定的加速度不宜将g写做一9.8m/s2,应在公式中符号“g”的前面加一个负号。规律如下:V=v-gt(13)t0h=vt-gt2(14)02v2=v2-2gh(15)t0h=(v+v)t(16)20t例:现将一个物体以30m/s的速度竖直上抛,若重力加速度取g=10m/s2,试求1秒末,2秒末,3秒末,4秒末,5秒末,6秒末,7秒末物体的速度和所在的高度。解这个题目直接套公式就可以了,如求速度用式13来求。因为v=v-gtt0将v°=30m/s,g=10m/s2及t分别等于1,2,3,4,5,6,7代入公式就可得出需要的速度结果。求高度用式14来求。因为h=vt-gt202将v°=30m/s,g=10m/s2及t分别等于1,2,3,4,5,6,7代入公式就可得出需要的高度结果。现将结果例入下表:每个时刻的速度:符号vtvov1V2V3V4V5V6V7速度(m/s)3020100-10-20-30-40每段时间的位移:符号hth0h1h2h3h4h5h6h7高度(m)02540454025035小结:⑴结合两个表的数值可以看出:vt=0时,上抛的物体在最高点45m)。(2)vt0物体向上运动;vt兀o物体向下运动。⑶ht=0时物体返回抛出点。⑷ht©°说明物体在抛出点以上,人兀0说明物体在抛出点以下。竖直上抛运动的几个特点:物体上升到最大高度时的特点是vt=0。由(15)式可知,物体上升的最大高度H满足:(2)上升到最大高度所需要的时间满足:vt=—0。gH二v2—02g物体返回抛出点时的特点是h=0。该物体返回抛出点所用的时间可由(14)式求得:2v——0-g将这个结论代入(13)式,可得物体返回抛出点时的速度v=-vt0这说明物体由抛出到返回抛出点所用的时间是上升段(或下降段)所用时间的二倍。也说明上升段与下降段所用的时间相等。返回抛出点时的速度与出速度大小相等方向相反。从前面两个表对比可以看出竖直上抛的物体在通过同一位置时不管是上升还是下降物体的速率是相等的。竖直上抛运动由减速上升段和加速下降段组成,但由于竖直上抛运动的全过程中加速度的大小和方向均保持不变,所以竖直上抛运动的全过程可以看作是匀减速直线运动。运动定律知识要点:第一专题:牛顿三个定律,是在学过的运动学规律的基础,进一步研究物体运动状态变化的原因,揭示出运动和力之间的本质关系,理解惯性的概念和质量的概念。知道什么是单位制及单位制在物理计算中的应用。第二专题:牛顿定律的应用,介绍超重和失重。理解并掌握有关连接体问题的计算,从而加深对牛顿定律的理解和运用。通过全章复习,进一步增加分析、解决问题的能力。一、牛顿三个定律1、牛顿第一定律,它讲述是物体不受任何力时所遵循的规律。其内容表叙为:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。对牛顿第一定律的理解应注意如下几点:(1)物体的这种保持原来的匀速直线运动状态或静止状态的性质叫做惯性。一切物体都有惯性。惯性是物体的固有属性,即不管物体是否运动,运动快慢,处于何种状态,受力情况如何等等,物体都有惯性,惯性的大小由物体的质量决定,质量是物体惯性大小的量度。(2)肯定了力是改变物体运动状态的原因,而不是维持或产生物体运动速度的原因。惯性使物体保持原有的运动状态,而要改变物体的运动状态,一定要有力的作用。物体一旦开始运动,维持这个运动,就不再需要力的作用了。这里必须强调指出的是:伽里略的理想实验,以可靠的事实为基础,经过抽象思维,抓住主要矛盾,忽略次要因素,从而更深刻地反映了自然规律,这种把可靠的事实和深刻的理论思维结合起来的理想实验,是科学研究中的一种重要方法。要知道理想实验,虽然是由人们在抽象思维中设想出来而实际上无法做到的“实验”。但它并不是脱离实际的主观臆想,首先它是以实践为基础,是在真实的科学实验的基础上,抓住主要矛盾,忽略次要矛盾对实际过程作出更深入一层的抽象分析,其次,理想实验的推理过程是以一定的逻辑法则为根据的,而这些逻辑法则又都是从长期的社会实践中总结出来的,并为实践所证实了的。在自然科学研究中,它作为一种抽象思维的方法,可以使人们对实际的科学实验有更深刻的理解,可以进一步揭示客观现象和过程之间内在的逻辑联系,并由此得出正确的结论。这从牛顿第一定律及其应用中体会到。在原来学习中,还会知道爱因斯坦在建立狭义相对论,广义相对论、量子论过程中都与“理想实验”密切相关的事实。(3)牛顿第一定律定性的说明力是运动状态改变的原因,即产生加速度的原因有牛顿第二定律的含义。而第一定律是物体不受任何力作用下的规律与物体受了力而合力为零等效,所以在处理问题时可按处理,但第一定律不能视为第二定律的特例。(4)在运用牛顿第一定律解释自然现象时,应抓住三点:第一物体的原状态,哪部分受力了,改变了原状态,哪一部分还未来得及受力仍保持原来的状态。因此会出现什么现象。2、对运动状态的改变的理解:(1)物体的运动状态,一般指的是物体的运动速度。(2)速度是矢量,物体的速度的大小改变(由静止到运动,由运动到静止,由快到慢,由慢到快等),速度方向的改变(曲线运动或转弯)或速度大小方向同时改变都叫物体的运动状态改变。(3)物体有加速度,物体的速度就不断变化,运动状态就不断变化;物体没有加速度,物体的速度就保持不变,物体的运动状态就不变。加速大的物体,运动状态改变的快;加速度小的物体,运动状态改变的慢。(4)力是使物体产生加速度的原因,但物体的加速度大小,又不完全由力的大小决定,还与物体的质量有关。因此,决定物体运动状态改变程度的物理量加速度,当A物体质量一定时,外力越大加速度越大;B外力一定时,物体的质量越大加速度越小,若为了产生相同的加速度质量大的物体需的力大,由此可以说明质量大的物体运动状态难于改变,即它的惯性大,因此可以用质量来量度物体的惯性,质量是物体本身的属性,与它和外界的关系无关与它与它的运动状态无关。物体的惯性只由其质量来量度。认为静止物体无惯性运动,物体有惯性或速度大的物体惯性大等都是错误的。3、牛顿第二定律(1)内容:物体的加速度跟物体所受的外力成正比,跟物体的质量成反比,加速度的方向和外力的方向相同。其数学表达式为(2)对定律的理解应注意如下几点:具有三性即瞬时性:有力就有加速度,力大加速度在,力小加速度大,力恒定加速度不变,力消失加速度无。矢量性:加速度的方向始终与合外力方向一致。对应性:一物体受几个力作用,各个力产生各自的加速,不能张冠李戴。是加速度的决定式,即加速度的大小对其质量相同的物体YF越大加速度越大,对YF相同的不同物体,质量越小加速度越大。应能区别加速度的定义式。(3)由定律中的a,m选取国际单位,规定力的单位(牛顿)使F=Kma中的K为1,即m定为lkg,a为lm/s2,此时力的大小定为IN,其中K=1,使运算简化。由牛顿定律可知重力和质量的关系G=mg(G为重力,g为重加速度)。研究对象是质点或可看质点的物体。加速度对力的依赖关系。对一定质量的物体,其加速度的大小和方向,完全由力的大小方向决定,跟物体的速度大小方向无关。(7)应用牛顿第二定律解题,一般按下列步骤进行。明确研究对象(即受力物体一一视为质点);分析研究对象所受的全部力——受力物体以外的物体对它的作用,准确画出各力的图示;选好坐标,对各个力进行正文分解,或求出各力的合力;应用牛顿第二定律列出方程;统一为国际单位,认真求解,最后给出明确答案,有数值计算的题答案中必须明确写出数值和单位。4、单位制说明:运算中一律取统一的国际单位,力学中长度取米m,质量取(千克)kg,时间取(秒)s,如果掌握了单位制的知识对于物理计算是很重要的。当已知量都统一为国际单位制,只要正确地应用物理公式,计算的结果未知量的单位也总是国际单位中它的单位。这样在解题时就没有必要在计算过程中一一写出各个量的单位,只是在最后标出所求量的单位就行了。此外用单位制可粗略检查计算结果是否正确。5、牛顿第三定律讲述的是两个物体之间相互作用的这一对力必须遵循的规律。这对力叫作用力和反作用力,实验结论是:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。对牛顿第三定律的理解应注意以下几点:作用与反作用是相对而言的,总是成对出现的,具有四同:即同时发生、存在、消失、同性质。(如果作用力是摩擦力反作用力也是摩擦力,绝不会是弹力或重力。)一对作用力和反作用力,分别作用于两个相互作用的物体上,不能抵消各自产生各自的效果,(F=m1a1,F=m2a2)不存在相互平衡问题。而平衡力可以抵消也可以是不同性质的力。作用力与反作用力与相互作用的物体的运动状态无关,无论物体处于静止、作匀速运动,或变速运动,此定律总是成立的。(4)必须弄清:拔河、跳高或马拉车。如果拔河:甲队能占胜乙队是由于甲队对乙队的拉力大于乙队受到的摩擦力,而甲队对乙队的拉力和乙队对甲队的拉力是一对作用反作用力。同理跳高是人对地面的压力和地面对人的支持力是一对作用力和反作用力,人只所以能跳起来,是地对人的支持力大于人受到的重力。(5)应指出的是应用牛顿第三定律解释问题最易出错。牛顿定律的应用知识要点:1、牛顿定律的应用到此为止力学已讲完三章知识。应该知道:第一章力,是讲述了力的基本概念:知道了力是物体间的相互作用,力是矢量有大小、方向,掌握了力的图示法,通过牛顿第二定律的学习了解到力的单位牛顿(N)的来历,认识了力学中的三种力(G、N、f)的学生计算,方向的确定,力的合成分解的运算法则,初步理解到力的作用效果。通过第二章,物体的运动的学习,掌握了直线运动中,匀速直线运动,特别是变速直线中的匀变速直线运动的规律,从中理解并掌握速度、位移、加变速、间间这些描述物体运动规律的物理量。第三章,牛顿运动定律详细阐明了运动和力(即运动状态变化和力)的关系。认识到物体为什么会这样或那样的运动的原因。因此三章知识的关系应是第一章,力学的准备知识认识力,第二章运动学,只讲运动规律,研究物体如何运动,第三章研究运动和力的关系称之力动力学。本专题讲述牛顿运动定律的应用,就是综合以上所学知识进行较全面地分析归纳,简单的逻辑思维推理,建立物理情景,缕出解题思路,运用数学知识列出方程求解,借此培养和提高各种能力,初步掌握解决力学问题的第一条途径即:两种类型三种运动方式。A两种类型:①知道力求得加速度决定物体的运动状态要求认真分析研究对象的受力情况画出受力示意图,依据力的作用效果进行正交分解,并求得所受力的合力,通过牛顿第二定律可以求出运动的加速度,如果再知道物体的初始条件,v0初速度初位置,根据运动学或就可以求出物体在任意时刻的位置和速度,这就是已知物体的受力情况,就可以确定物体运动的情况。与此相反②如果已知物体的运动情况根据运动学公式求出物体的加速度,也可以根据牛顿第二定律确定物体所受的外力。B、三种运动方式及其在运动应该特别注意的问题水平方向运动,看有无不水平力,此时会影响到压力N从而影响摩擦力f,因为只有水平力作用时Nmg竖直方向运动,千万不可忘记重力mg,匀速运动F=mg,然后看v0,的方向确定是向上或向下运动。如果匀加向上F-mg=ma,若匀加向下,mg-F=ma物体沿斜面方向运动,看有无水平力,此时会影响压力N从而影响摩擦力f的大小:当无水平方向力的作用时,N=mgcos,f=,当有水平方向力的作用时,N=mgcos如图所示。C、解题步骤确定研究对象(视为质点)一个物体,一个点或相对静止的多个物体组成的物体系。研究对象的受力分析。a、画受力示意图,只画被分析物体受到的实际力(内力不画它对外界物体的力不画,等效力(含力分力)不画)b、受到的实际力,不能多画,也不能漏画,(可绕行物体一周,找出可能受到的力,按力的性质顺序画出重力、弹力、摩擦力)c、判断被分析物体运动状态是平衡,还是有加速度(不平衡)d、作受力分析,即通过矢量分解合成的方法把受到的多个力简化一个等效力(即),若被分析物平衡则=0,若有加速度则方向与a方向相同。建立物理情景,弄清物理过程确定运动性质列方程,已知量统一单位制(国际单位)代入数值求解对结果必要应加以说明或取舍。2、超重和失重现象,实质上是视重。因为物体在运动中重力不变,我们知道物体的重力是由于地球对物体的吸引,而使物体受到的力,物体重力的大小可用弹簧秤称出来。物体在静止或上下匀速直线运动中,=0,有F=mg(F为弹簧的示数)。当物体在竖直方向上加速度运动时,仍以弹簧秤吊着物体,此时弹簧的示数就有变化,称为视点,加速上升时F>mg,加速下降F<mg,分析如下:加速上升,以向上为正方向F—mg=ma减速下降,以向下为正方向F=mg+ma.*.F>mgmg—F=—ma.*.F>mgVF=mg+ma・・・加速上升等效于减速下降同理分析,减速上升以向上为正方向F—mg=—ma加速下降以向下为正方向F=mg—maF<mgmg=F=maF=mg—maVF<mg・・・加速下降等效于减上升,当向下加速a=g时,处于完全失重状态。3、有关连接体问题高考说明中明确指出:用牛顿定律处理连接体的问题时,只限于各个物体的加速度的大小、方向都相同的情况。所谓连接体是指:在实际问题中常常碰到的几个物体连结在一起,在外作用下的运动即连接体运动。其特点是:连接体的各部分之间的相互作用力总是大小相等,方向相反的(在将连接体作为一个整体考虑时这相互作用力称之为内力)而连接体各部分的运动情况也是相互关联的。应认识到这类问题综合应用了牛顿运动定律和运动学、力的合成分解等方面的知识难度较大,因此必须掌握解此类问题的二般规律,即整体法求加速度,隔离法求相互作用力。所谓整体法即把连接体看成一个整体考虑,受力分析时的外力是连接体以外的物体对整体连接体的作用力(连接体各部分之间的相互作用称之为内力未能考虑在内)。这些力的合力产生整体加速度。所谓隔离法,就是把连接体中的各个物体从连接体的整体中隔离出来,单独考试它们各自的受力情况和运动情况,此时的相互作用力即是外力,在受力分析不能忽略。常见的连接体有:①升降机及机内的物体运动②汽车拉拖车吊车吊物上升光滑水平面两接触物体受力后运动情况两物体置在光滑的水平面受力后运动情况验证“牛顿第二定律”的实验如右图装置曲线运动知识要点:将一个物体在一定的高度沿水平方向扔出去物体做的运动就叫平抛运动。平抛运动是普遍存在的一种运动形式,如:飞机水平飞行时投出去的炸弹,水平射出去的枪弹……等,均做平抛运动。在学习的过程中要注意研究平抛运动的方法——运动的合成和分解。根据运动的独立性原理,我们可以把一个较复杂的运动分解成两个沿不同方向的较简单的运动;同样,我们也可以把两个(或两个以上)简单的运动合成一个较复杂的运动。从道理上讲掌握这种方法比掌握平抛运动的规律更重要,因为有了方法不但可以研究平抛运动还可以研究如上斜抛运动、下斜抛运动……。一、曲线运动1•曲线运动的速度特点:质点沿曲线运动时,它在某点即时速度的方向一定在这一点轨迹曲线的切线方向上。因为曲线上各点的切线方向一般是不相同的,所以质点在沿曲线运动时速度的方向是在不断改变的;又因为速度方向不断改变,所以可说任何一个曲线运动都是变速运动。质点在运动中都具有加速度。2•物体做曲线运动的条件:因为质点沿曲线运动时一定具有加速度,根据牛顿第二定律可知,该质点所受的合外力一定不为零,即质点一定受到合外力的作用。这就是物体做曲线运动的条件。对这个做曲线运动的质点受到的合外力还应认识到这个力的方向一定与质点运动方向不在一条直线上,否则质点将沿直线运动。二、运动的合成与分解2、运动的合成分解:是在已学过的力的合成分解的基础上进一步研究的,由于位移、速度、加速度与力一样都是矢量。是分别描述物体运动的位置变化运动的快慢及物体运动速度变化的快慢的。由于一个运动可以看成是由分运动组成的,那么已知分运动的情况,就可知道合运动的情况。例如轮船渡河,如果知道船在静水中的速度的大小和方向,以及河水流动的速度的大小和方向,应用平行四边法则,就可求出轮船合运动的速度v(大小方向)。这种已知分运动求合运
动叫做运动的合成。相反,已知合运动的情况,应用平行为四边法则,也可以求出分运动和情况。例如飞机以一定的速度在一定时间内斜向上飞行一段位移,方向与水平夹角为30,我们很容易求出飞机在水平方向和竖直方向的位移:这种已知合运动求分运动叫运动的分解。合运动分运动是等时的,独立的这一点必须牢记。以上两例说明研究比较复杂的运动时,常常把这个运动看作是两个或几个比较简单的运动组成的,这就使问题变得容易研究。在上例轮船在静水中是匀速行驶的,河水是匀速流动的,则轮船的两个分运动的速度矢量都是恒定的。轮船的合运动的速度矢量也是恒定的。所以合运动是匀速直线的。一般说来,两个直线运动的合成运动,并不一定都是直线的。在上述轮船渡河的例子中如果轮船在划行方向是加速的行驶,在河水流动方向是匀速行驶,那么轮船的合运动就不是直线运动而是曲线运动了。由此可知研究运动的合成和分解也是为了更好地研究曲线运动作准备。掌握运动的独立性原理,合运动与分运动等时性原理也是解决曲线运动的关键。1•运动合成、分解的法则:运动的合成和分解是指位移的合成与分解及速度、加速度的合成与分解。因为位移、速度和加速度都是矢量,所以运动的合成(矢量相加)和分解(矢量相减)都遵循平行四边形法则。关于这一点通过实验是完全可以验证的,通过对实际运动观察也能得到证实。如图所示,若OA矢量代表人在船上行走的位移(速度或加速度)OB矢量代表船在水中行进的位移(速度或加速度),则矢量OC的大小和方向就代表人对水(合运动)的位移(速度或加速度)。几点说明:⑴掌握运动的合成和分解的目的在于为我们提供了一个研究复杂运动的简单方法。⑵物体只有同时参加了几个分运动时,合成才有意义,如果不是同时发生的分运动,则合成也就失去了意义。⑶当把一个客观存在的运动进行分解时,其目的是在于研究这个运动在某个方向的表现。⑷处理合成、分解的方法主要有作图法和计算法。计算法中有余弦定理计算、正弦定理计算、勾股定理计算及运用三角函数等。三、平抛物体运动1•物体平抛的运动:大家知道,物体只在重力作用下自由下落的运动叫自由落体运动;物体只在重力作用下初速度向下的叫竖直下抛运动;物体只在重力作用下初速度竖直向上的运动叫竖直上抛运动。平抛运动与以上这些运动不同之处在于初速度的特点。⑴物体只在重力作用下,初速度沿水平方向的抛体运动叫平抛运动。做抛体运动的物体,都是只受重力作用,显然这里的“抛”不是指把物体抛出的过程,而是指抛出后物体的运动。⑵平抛运动可以看作是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。关于这一点可以这样来考虑。在空间的竖直平面上建立一个直角坐标系(oxy),使x轴的正方向与抛出时的速度方向重合,使y轴竖直向下。那么,如果平抛出去的物体没有受到重力作用,则它将以平抛初速度v做匀速直线运动。且满足:0x二vt、v二v、a二0;若该物体没有初速度,则它在重力作用下一定0t0x做自由落体运动。且满足:y=1gt2、v=gt、a=g。因为平抛出去的2yy物体既受重力作用,又有水平方向的初速度,所以它是这两个分运动的合运动。平抛运动的规律:如图,以抛出点为原点建立一个水平、竖直的直角坐标系(oxy)。
平抛出去的质点沿x轴作匀速运动,沿y轴作自由落体运动(初速度为零的匀加速运动)。图中虚线表示质点所在的位置分别对应的在x、y轴上的坐标。图中红色的曲线是平抛运动的轨迹,兰色的有向线段表示到A位置时的位移。⑴平抛运动的轨迹:平抛运动的轨迹(抛物线)可以用xy的坐标方程表示:x=vt00<1Iy=2gt2y=—^x22v20这是一个抛物线方程。0x=vt,010x=vt,01y=2gt2又0s=fx2+y2由图不难看出位移方向与水平方向的夹角a满足a=arctg—xgt=arctg2v0⑶t时刻物体的速度:0v=vv=gtx0y...v=v2+v2txy=勺vo2+g212且速度方向与x轴的夹角0满足:vB=arctg亠vxgt=arctg-v0⑷平抛物体的加速度:0a=0,a=gxyIa=、:a2+a2=gxy方向竖直向下。由此说明平抛运动是匀变速(加速度恒定)运动。四、匀速圆周运动。它是圆周运动中最简单而又最常见的曲线运动,它是在任何相等的时间里通过的圆弧长度都相等的圆周运动。其特征是:线速度大小不变,角速度不变,周期恒定的圆周运动,它是变加速曲线运动。描述匀速圆周运动的物理量及其之间关系为:F向心力不是特殊的力是物体在做圆运动时受到诸力的合力。由动力向心力必须强调指出:使物体做匀速圆周运动的向心力,不是什么特殊的力,任何一种力或几种力的合力,只要它能使物体产生向心的加速度,它就是物体所受的向心力。万有引力定律万有引力定律是牛顿在前人大量观测和研究的基础上总结概括出来的最伟大的定律之一。万有引力定律被发现的意义在于把地面上所了解的现象与宇宙中天体变化的规律统一了起来,直接向有神论进行了冲击;另一方面万有引力定律的发现摧毁了人类过去对宇宙的错误认识,为人类确立全新的宇宙观打下了基础。这就是说万有引力定律的发现不仅具有学术上的意义,对人类物质观、宇宙观的发展和进步都起到了极其重要的作用。一、历史的回顾:古代从农牧业生产和航海的实际需要出发,很早就开始了对天体运动的研究。“天文学”可称作是发展最早的自然科学之一。在几千年的发展过程中“地心说”和“日心说”进行了长期的斗争。1、公元二世纪以希腊天文学家托勒玫为代表的地心说认为:地球是宇宙的中心,宇宙万物都是上帝创造。宇宙中的一切天体都围着地球旋转。这个学说在教会支持下,延续一千余年。现在看来这个学说是错误的,但地心说的出现仍旧促使了世界航海事业的发展,对提高发展生产力起到了积极作用。2、十六世纪波兰天文学家哥白尼,经过四十年的观测和研究,在古代日心说的启发下重新提出了新的日心说:太阳是宇宙的中心,地球和其它行星一样都绕太阳旋转。这个学说很容易解释许多天文现象。这种学说虽然受到教会的反对和迫害,但在伽利略、布鲁诺为代表的一些人支持下仍被人们逐渐接受。3、丹麦天文学家第谷经过二十余年长期对行星的观测和精确测量,又经他的助手开普勒用二十年时间的统计分析概括进一步完善了“日心说”。开普勒于十七世纪发表著名的开普勒三定律。开普勒第一定律:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳是在这些椭圆的一个焦点上。开普勒第二定律:对每个行星来说,太阳和行星的连线在相等的时间内扫过相等的面积。开普勒第三定律:所有行星的椭圆轨道的长半轴的三次方跟公转周期的平方的比值都相等。三大定律的发现,使人类的天文学知识提高了一大步。二、牛顿对行星运动的解释:牛顿从他本人发现的牛顿第二定律出发深入分析和研究了天体运行的规律,他对行星运动的规律的解释主要有以下几个层次:1、设行星都沿圆周运动,那么行星运动所需的向心力应满足:由开普勒第三定律则:式中为行星质量,R为行星运动的轨道半径。式中的常数K对太阳系来说保持不变。从牛顿第三定律出发,太阳吸引行星的力应与行星吸引太阳的力大小相等。既然与行星质量成正比,那么行星吸引太阳的力也应与太阳的质量M成正比,也就是说常数K是一个与太阳质量M成正比的数。再引进一个常数G,并令:则太阳吸引行星的力:常数G是与太阳质量无关的恒量。2、行星与卫星之间的作用力与太阳和行星之间的作用力同属一个性质的力。关于这一点牛顿是从月亮运行的周期T、轨道半径R等已知参数计算得出,月球和地球之间的作用力也是跟它们质量的乘积成正比,跟它们之间的距离的平方成反比的。3、地球对地面物体的吸引力跟地球对月球的吸引力属同种性质的力。地面上的重力加速度为g,地球的半径为R,而月球到地心的距离恰为地球半径的60倍,而月球作匀速圆周运动的加速度恰为重力加速度的1/3600,这说明地球对物体的吸引力和地球对月球的吸引力也属同一性质的力。以上这些为牛顿提出万有引力定律打下坚实基础。三、万有引力定律:1、内容:任何两个物体都是互相吸引的,引力的大小跟两个物体的质量的乘积成正比,跟它们的距离的平方成反比。这就是万有引力定律。2、公式(1)公式中G称作万有引力恒量,经测定。(2)公式中的R为质点间的距离。对于质量分布均匀的球体,可把它看做是质量集中在球心的一个点上。(3)从可以看出,万有引力是非常小的,平时很难觉察,所以它的发现经历了对天体(质量特别大)运动的研究过程。四、万有引力恒量的测定:自牛顿发表万有引力定律以来,人们试图在实验中测出引力的大小,其目的在于给“万有引力定律”进行鉴别和检验。因为没有被实验验证的理论总是空洞的理论,更无实际意义。英国物理学家卡文迪许承担了这样一项科学难题,他发挥了精湛的实验才能,取得了极其精确的结果。实验装置是用的扭秤(如右图所示),秤杆长2.4,两端各置一个铅质球,再用另外两个球靠近,研究它们的引力规律。实验原理是用力矩平衡的道理。实验结果:首先验证了万有引力的正确性。另外测定了万有引力恒量为:目前万有引力恒量的公认值为:小结:1、万有引力定律的发现,绝不是牛顿一人的成果。它是人类长期研究奋斗的结果,甚至有人献出了宝贵的生命。2、万有引力定律的确立,并不是在1687年牛顿发表之时,而应是1798年卡文迪许完成实验之时。3、万有引力定律的公式:只适用于质点间的相互作用。这里的“质点”要求是质量分布均匀的球体,或是物体间的距离r远远大于物体的大小,这两种情况。4、运用万有引力定律解决具体问题时,要特别注意指数运算。5、在计算过程中,如果要求精度不高,可取来运算,这样可使计算简化。机械能自然界存在着各种形式的能,各种形式的能之间又可以相互转化,而且在转化的过程中能的总量保持不变。这是自然科学中最重要的定律之一。各种形式的能在相互转化的过程中可以用功来度量。这一章研究的是能量中最简单的一种——机械能,以及与它相伴的机械功,能的转化和守恒,是贯穿全部物理学的基本规律之一。解决力学问题,从能量的观点入手进行分析,往往是很方便的。因此,学习这一章要特别注意养成运用能量观点分析和研究问题的习惯。这一章研究的主要内容有:功和功率、动能和动能定理、势能及机械能守恒定律。一、什么是功和功率1、功(W)如图所示,物体受到力的作用,并且在力的方向上发生了一段位移,我们说力对物体做了功。有力、有力的方向上的位移是功的两个不可缺少的因素。我们可以把力F沿位移S的方向和垂直于位移的方向分解为F、F〃。其中分力F做功,而分力F〃并未做功,而,所以力F对物体所做的功可表示为。同学们也可以试一下,把位移S分解为沿力F方向的分位移S和垂直于力F方向的分位移S〃。显然物体在力F的作用下,沿力的方向的位移为S,同样可得力F对物体做的功,得出功的公式:该式既是功的量度式(也叫计算式),也是功的决定式。当时,为正,式中的,为正功(或说外力对物做了功);当,,式中的W为零(或说力不做功);当,为负值,式中的,为负功(我们说力对物体做负功,或说物体克服外力做了功)。当,,或中的W也为负功(我们仍说力对物体做负功。或说物体克服外力做了功);当F是合力()时,则W是合力功();如卬是各力做功的代数和,我们说W的总功。几点说明:(1)力(F)能改变物体的运动状态,产生加速度,但只有使物体移动一段位移(S),力的效应才能体现出来,如引起速度的变化。可以说功是力在空间上的积累效应。(2)功是属于力的,说“功”必须说是哪个力的功。如:重力的功、拉力的功、阻力的功、弹力的功等。若是合力所做的功,就要说明是合力的功。(3)公式中F、S都是矢量,而它们的积W是标量,它的正与负仅由力与位移的夹角决定;它的正与负仅表示是对力物体做功还是物体克服该力做功。功的国际制单位是J(焦)。(4)功是能量变化的量度,是能量转化的过程量。做功一定伴随着一段运动的过程(没有即时意义),因此说功必须说明力在那个过程做的功。力对物体做了多少功就有多少其它形式的能转化成物体的机械能。做功是能量转化的一种方式。2、功率(P)某个力所做的功跟完成这个功所用时间的比值,叫该力做功的功率。即(1)因为所以(2)(1)、(2)两式反映的是一个力在一段时间(t)内做功的平均快慢程度,故称做“平均功率”。若(2)式中的平均速度用即时速度v取代。则(2)式变为(3)这就是即时功率的公式。注意:(1)功率是表示做功快慢的物理量,所谓做功快慢的实质是物体(或系统)能量转化的快慢。平均功率描述的是做功的平均快慢程度,因此说平均功率必须说明是哪段时间(或哪段位移上)的平均功率。而即时功率描述的是做功瞬间的快慢程度,因此说即时功率必须说明是哪个时刻(或哪个位置)的即时功率。(2)功率和功一样,它也是属于力的。说到“功率”必须说是哪个力的功率。如:重力的功率、拉力的功率、阻力的功率、弹力的功率等。若是合力所做的功的功率,就要说明是合力的功率。(3)额定功率是机器设备安全有效工作时的最大功率值,当机器以额定功率工作时,作用力增大,必须减小速度,两者成反比。实际功率是机器工作时的功率,也可能超过额定的功率,这样对机器设备、是有损害的。正常工作时,机器的实际功率不应超过它的额定功率值。(4)计算功率的三个公式的适用条件是不一样的。(1)式除适用于力学范畴外,对其它领域也适用,如平均电功率,平均热功率等;(2)式只适用于力学范畴,且要求力F为恒定的力,式中的为恒力F跟平均速度的夹角;(3)式适用于力学范畴,力F可以是恒力,也可以是变力,式中是力F与即时速度v的夹角。(5)功率的正负(仅由角决定)表示是力对物体做功的功率还是物体克服外力做功的功率。在国际制单位中功率的单位是W(瓦)。二、几个应该弄清楚的问题(选学)1、的适用条件。在使用功公式时,若不注意它的适用条件,往往得出错误的结论。例如,马用水平力拉着碌子在场院上轧谷脱粒,若马的拉力为800牛顿,碌子在场院上转圈的半径是10米,求转一圈马对碌子做的功。碌子每转一圈都回到原来的出发点,它并没有发生位移,或称位移为零。有人套用上式,认为既然碌子的位移是零,则说明马没有对碌子做功,即使多转几圈也不会做功的,这样的结论是错误的。因为按这样的观点来看,马拉着碌子转半圈是有位移的,而且位移恰好等于圆轨迹的直径(20米)。前半圈马对碌子做了功。同样,后半圈马也做了功,但上面却得出马拉碌子转一圈(两个半圆)没有做功的结论,这显然是自相矛盾的。为什么会得到马没有做功的结论,其主要是没有注意公式的适用条件,乱套公式造成的。在机械运动中,物体的位移(S)仅由物体初、末两位置决定,在给定的时间内或确定的一段运动过程中,物体的位移(包括大小和方向)具有确定的值。但在这段运动过程中物体受的某个力(F)可能是恒定的,也可能是变化的。当作用力(F)恒定时,公式中力的大小、位移的大小、力与位移的夹角都有确定的值,这样可以得出力对物体做功的确定的值。但如果力(F)是变力(当然这种变化可以是力的大小发生变化,也可以是力的方向发生变化,也可能是二者都变化),公式中力的大小或力与位移的夹角就无法确定。在这样的情况下仍用公式来计算力对物体所做的功,肯定不会得出准确的结果。这就是说上述的功的公式只适用于恒力做功的情况,对变力做功的情况是不适用的,因而有的读物明确指出上述公式叫‘恒力功的公式'。马拉碌子转圈,即使马的拉力保持在800牛顿,但由于这个力的方向总是沿着圆的切线方向,随着碌子的运动,这个力不断地改变方向,是个变力。因此不能用功的公式来计算功。2、怎样计算变力的功?下面介绍两种求变力功的方法:⑴可以把物体运动的轨迹分割成足够多的小段。使物体在每个足够小的轨迹小段(AS)上所受的力可以看作是恒力时,就可以用功的公式计算出物体在每个小段上运动时作用力的功(AW)。然后把各小段作用力的功求和,便能得出变力对物体所做的功。这种方法可称作分割法。如马拉碌子转圈时,可以把圆轨迹均匀分割成n段(n足够大),对每一小段(足够小)来说,碌子的位移AS)都和轨迹重合,在每一小段上都认为马的拉力的方向不变化,而且与位移(AS)方向一致。即力与位移的夹角为零,在每个小段上拉力F所做的功(AW)可以从功的公式得出马拉碌子转一圈拉力所做的功因为等于碌子做圆运动转一圈通过的路程(圆周长)。即所以马拉碌子转一圈的功为以上分析说明,使用功的公式时,一定要注意它的适用条件。⑵如果力的方向不改变仅仅是力的大小发生了改变,也可以用图象的方法求变力功。如图所示,物体m静置在光滑的水平面上与一个轻弹簧相连,弹簧的另一端固定在墙上。若弹簧的劲度系数为K,现用一个水平向右的力F拉物体,使物体移动一段位移S,第一次拉力是恒力;第二次缓慢地拉物体。试求两次拉力所做的功。因为第一次拉力是恒力,且拉力方向与运动方向相同,可以直接用公式(W=F・S)求得,也可以作出F-S图象(如图)来求,显然F-S图线下的面积就是力F所做的功;第二次缓慢地拉物体时,拉力F一定是变力,它的大小任何时刻都跟弹簧的弹力大小相等,力的方向与运动的方向相同,也可以作出F—S图象(如下图)来求角牟F-S图线下的面积就是变力F所做的功。这是一个三角形的面积,面积等于底(S)乘高(KS)除以2,那么可得。这种求变力功的方法可称作图象法。三、小结:1、功是能量转换多少的量度,做功的过程就是能量转换的过程。做了多少功就有多少能量转化成另一种形式的能,或有多少能从一个物体转移到另一个物体上。2、要正确区分恒力功和变力功。公式只对恒力做功适用。不对具体问题作具体分析,而是靠套用公式解题是学习物理的最大障碍。3、关于功率,要正确区分“平均功率”和“即时功率”。对于匀速直线运动来说,因为平均功率与即时功率相等,故没有区分的必要。4、在保证功率相同的情况下,因为功率P=F・v,所以牵引力越大,则速度越小;反之牵引力越小,速度越大。这就是汽车满载时速度小,而空载时速度大的道理。功和能知识内容:1、动能2、动能定理3、熟练应用动能定理,解决涉及力的作用与物体运动状态变化之间关系的一系列力学问题。知识要点;1、动能:在机械能范筹内,我们给能量下了个通俗的定义,什么是能?能是物体具有做功的本领。据此可推出:物体能做功,我们就说物体具有能,运动着的物体就具有做功的本领,流动的河水推动船只顺流而下,对船做功,飞行的子弹打穿耙心,克服耙纸的阻力做功等等。因而运动的物体能做功,运动物体具有能。定义:物体由于运动而具有的能量叫做动能。大小(量度):※动能是标量,单位是焦耳。一个物体的动能是物体运动状态的函数。2、动能定理:内容:外力对物体做功的代数和等于物体动能的增量数学表达式:※①,物体受到的所有力做功的代数和。,末态的动能减去初态的动能,称为动能的增量。,动能增加,动能减少,动能不变(速率不变)3、应用动能定理处理力学问题的一般程序(思路)明确研究对象和初、末状态,明确初、末两状态的动能。对研究对象进行受力分析、明确各力对物体做功的情况。依据动能定理,列出所有力做功的代数和等于动能增量的方程。根据题目需要,解方程,统一单位,代入数值(题目提供的已知条件),求出答案。探a.动能定理由二定律和运动学公式推导得出。用二定律结合运动学公式解决的力学问题,一般用动能定理也能解,且解得简便。在应用动能定理解题时,只考虑起、止两状态的动能和过程中各力做功情况,而不涉及过程经历的时间和经历此时过程中的每个细节。动能定理反应了做功是能量改变的途径,同时是能量变化的量度的物理本质。现在,我们思考功的大小时就有了、和根据动能定理求功的思路(某些情况下,利用动能定理还可以求变力做动量知识要点:一、冲量1、冲量:作用在物体上的力和力的作用时间的乘积叫做冲量。表示为I=F•to2、冲量是个矢量。它的方向与力的方向相同。3、冲量的单位:在国际单位制中,冲量的单位是牛顿•秒(N・S)o4、物体受到变力作用时,可引入平均作用力的冲量。。要点:1、冲量是力的时间积累量,是与物体运动过程相联系的量。冲量的作用效果是使物体动量发生改变,因此冲量的大小和方向只与动量的增量直接发生联系,而与物体动量没有什么直接必然联系。2、冲量是矢量,因而可用平行四边形法则进行合成和分解。合力的冲量总等于分力冲量的矢量和。二、动量1、动量:物体质量与它的速度的乘积叫做动量。表示为。2、动量是矢量,它的方向与物体的速度方向相同。3、动量的单位:在国际单位制中,动量的单位为千克•米/秒(kg•m/s)。要点:1、动量与物体的速度有瞬时对应的关系。说物体的动量要指明是哪一时刻或哪一个位置时物体的动量。所以动量是描述物体瞬时运动状态的一个物理量。动量与物体运动速度有关,但它不能表示物体运动快慢,两个质量不同的物体具有相同的速度,但不具有相同的动量。2、当物体在一条直线上运动时,其动量的方向可用正负号表示。3、动能与动量都是描述物体运动状态的物理量,但意义不同。物体动能增量与力的空间积累量——功相联系,而物体动量的增量则与力的时间积累量——冲量相联系。三、动量定理1、物体受到冲量的作用,将引起它运动状态的变化,具体表现为动量的变化。2、动量定理:物体所受的合外力的冲量等于物体动量的增量。用公式表示为:要点:1、在中学阶段,动量定理的研究对象是一个物体。不加声明,应用动量定理时,总是以地面为参照系,即P1,P2,都是相对地面而言的。2、动量定理是矢量式,它说明合外力的冲量与物体动量变化,不仅大小相等,而且方向相同。在应用动量定理解题时,要特别注意各矢量的方向,若各矢量方向在一条直线上,可选定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宠物肌肉和神经系统修复考核试卷
- 制鞋业市场调研方法研究研究考核试卷
- 新能源汽车的发展与未来考核试卷
- 染整行业环保技术应用考核试卷
- 林业知识产权保护与商业化运作考核试卷
- 2024至2030年中国预应力管道行业投资前景及策略咨询研究报告
- 2024版股权转让合同范本:股东权益与义务详解
- 2024至2030年中国涂层复合家纺面料数据监测研究报告
- 单位与司机合同协议
- 2024至2030年中国异型铜材数据监测研究报告
- JJF(电子)0036-2019 示波器电流探头校准规范-(高清现行)
- 2020心肌梗死后心力衰竭防治专家共识课件
- 蓄水池防水施工方案
- 隧道的衬砌计算(85页清楚明了)
- 人教版八年级(初二)数学上册全册课件PPT
- Q∕GDW 10202-2021 国家电网有限公司应急指挥中心建设规范
- CNAS-CL01:2018(ISO17025:2017)改版后实验室首次内审及管理评审资料汇总
- 护理不良事件-PPT课件
- 商业银行两地三中心数据容灾备份方案建议书
- 审核评估报告(课堂PPT)
- 体育运动中的二次函数
评论
0/150
提交评论